2019
Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images
GÓMEZ-DE-MARISCAL, Estibaliz, Martin MAŠKA, Anna KOTRBOVÁ, Vendula POSPÍCHALOVÁ, Pavel MATULA et. al.Základní údaje
Originální název
Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images
Autoři
GÓMEZ-DE-MARISCAL, Estibaliz (724 Španělsko), Martin MAŠKA (203 Česká republika, garant, domácí), Anna KOTRBOVÁ (203 Česká republika, domácí), Vendula POSPÍCHALOVÁ (203 Česká republika, domácí), Pavel MATULA (203 Česká republika, domácí) a Arrate MUÑOZ-BARRUTIA (724 Španělsko)
Vydání
Scientific Reports, 2019, 2045-2322
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.998
Kód RIV
RIV/00216224:14330/19:00107638
Organizační jednotka
Fakulta informatiky
UT WoS
000485680900008
Klíčová slova anglicky
image segmentation;deep learning;smal extracellular vesicles;transmission electron microscopy
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 6. 2022 12:09, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Small extracellular vesicles (sEVs) are cell-derived vesicles of nanoscale size (~30–200 nm) that function as conveyors of information between cells, refecting the cell of their origin and its physiological condition in their content. Valuable information on the shape and even on the composition of individual sEVs can be recorded using transmission electron microscopy (TEM). Unfortunately, sample preparation for TEM image acquisition is a complex procedure, which often leads to noisy images and renders automatic quantifcation of sEVs an extremely difcult task. We present a completely deep-learningbased pipeline for the segmentation of seVs in teM images. our method applies a residual convolutional neural network to obtain fne masks and use the Radon transform for splitting clustered sEVs. Using three manually annotated datasets that cover a natural variability typical for sEV studies, we show that the proposed method outperforms two diferent state-of-the-art approaches in terms of detection and segmentation performance. Furthermore, the diameter and roundness of the segmented vesicles are estimated with an error of less than 10%, which supports the high potential of our method in biological applications.
Návaznosti
GA17-05048S, projekt VaV |
| ||
GJ17-11776Y, projekt VaV |
|