D 2017

Optimizing Expectation with Guarantees in POMDPs

CHATTERJEE, Krishnendu; Petr NOVOTNÝ; Guillermo A. PÉREZ; Jean-Francois RASKIN; Djordje ŽIKELIĆ et. al.

Základní údaje

Originální název

Optimizing Expectation with Guarantees in POMDPs

Autoři

CHATTERJEE, Krishnendu; Petr NOVOTNÝ; Guillermo A. PÉREZ; Jean-Francois RASKIN a Djordje ŽIKELIĆ

Vydání

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), od s. 3725--3732, 2017

Nakladatel

AAAI Press

Další údaje

Typ výsledku

Stať ve sborníku

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

EID Scopus

2-s2.0-85030468679

Klíčová slova anglicky

Partially-observable Markov decision processes; Discounted payoff; Probabilistic planning; Verification

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 26. 9. 2019 09:44, doc. RNDr. Petr Novotný, Ph.D.

Anotace

V originále

A standard objective in partially-observable Markov decision processes (POMDPs) is to find a policy that maximizes the expected discounted-sum payoff. However, such policies may still permit unlikely but highly undesirable outcomes, which is problematic especially in safety-critical applications. Recently, there has been a surge of interest in POMDPs where the goal is to maximize the probability to ensure that the payoff is at least a given threshold, but these approaches do not consider any optimization beyond satisfying this threshold constraint. In this work we go beyond both the “expectation” and “threshold” approaches and consider a “guaranteed payoff optimization (GPO)” problem for POMDPs, where we are given a threshold t and the objective is to find a policy σ such that a) each possible outcome of σ yields a discounted-sum payoff of at least t, and b) the expected discounted-sum payoff of σ is optimal (or near-optimal) among all policies satisfying a). We present a practical approach to tackle the GPO problem and evaluate it on standard POMDP benchmarks.