2018
Expectation Optimization with Probabilistic Guarantees in POMDPs with Discounted-Sum Objectives
CHATTERJEE, Krishnendu, Adrián ELGYUTT, Petr NOVOTNÝ a Owen ROUILLÉZákladní údaje
Originální název
Expectation Optimization with Probabilistic Guarantees in POMDPs with Discounted-Sum Objectives
Autoři
CHATTERJEE, Krishnendu, Adrián ELGYUTT, Petr NOVOTNÝ a Owen ROUILLÉ
Vydání
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018), od s. 4692--4699, 7 s. 2018
Nakladatel
ijcai.org
Další údaje
Typ výsledku
Stať ve sborníku
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
ISBN
978-0-9992411-2-7
Klíčová slova anglicky
POMDPs; Planning under Uncertainty; Planning with Incomplete Information
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 26. 9. 2019 10:15, doc. RNDr. Petr Novotný, Ph.D.
Anotace
V originále
Partially-observable Markov decision processes (POMDPs) with discounted-sum payoff are a standard framework to model a wide range of problems related to decision making under uncertainty. Traditionally, the goal has been to obtain policies that optimize the expectation of the discounted-sum payoff. A key drawback of the expectation measure is that even low probability events with extreme payoff can significantly affect the expectation, and thus the obtained policies are not necessarily risk averse. An alternate approach is to optimize the probability that the payoff is above a certain threshold, which allows to obtain risk-averse policies, but ignore optimization of the expectation. We consider the expectation optimization with probabilistic guarantee (EOPG) problem where the goal is to optimize the expectation ensuring that the payoff is above a given threshold with at least a specified probability. We present several results on the EOPG problem, including the first algorithm to solve it.