D 2019

Computing multiple guiding paths for sampling-based motion planning

VONÁSEK, Vojtěch, Robert PĚNIČKA a Barbora KOZLÍKOVÁ

Základní údaje

Originální název

Computing multiple guiding paths for sampling-based motion planning

Autoři

VONÁSEK, Vojtěch (203 Česká republika, garant), Robert PĚNIČKA (203 Česká republika) a Barbora KOZLÍKOVÁ (203 Česká republika, domácí)

Vydání

Belo Horizonte, Brazil, Proceedings of the 19th International Conference on Advanced Robotics, ICAR 2019, od s. 374-381, 8 s. 2019

Nakladatel

Neuveden

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10200 1.2 Computer and information sciences

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Kód RIV

RIV/00216224:14330/19:00107686

Organizační jednotka

Fakulta informatiky

ISBN

978-1-7281-2467-4

UT WoS

000542960700060

Klíčová slova anglicky

path planning;sampling;configuration space;robotics

Štítky

Změněno: 14. 5. 2024 22:53, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

Path planning of 3D solid objects leads to search in a six-dimensional configuration space, which can be solved by sampling-based motion planning. The well known issue of sampling-based planners is the narrow passage problem which is caused by the presence of small regions of the configuration space, that are difficult to cover by random samples. Guided-based planners cope with this issue by increasing probability of sampling along an estimated solution (a guiding path). In the case of six-dimensional configuration space, a guiding path needs to be computed in the configuration space rather than in the workspace. Fast computation of guiding paths can be achieved by solving similar, yet simpler problem, e.g., by reducing size of the robot. This results in an approximate solution (path) that is assumed to be located near the solution of the original problem. The guided sampling along this approximate solution may however fail if the approximate solution is too far from the desired solution. We cope with this problem by sampling the configuration space along multiple approximate solutions. We propose an iterative method to compute multiple approximate solutions in the configuration space. Exploration of the configuration space around already found paths is inhibited, which boosts the search of alternative paths. The performance of the proposed approach is verified in scenarios with multiple narrow passages and compared with several state-of-the-art planners.

Návaznosti

GA17-07690S, projekt VaV
Název: Metody identifikace a vizualizace tunelů pro flexibilní ligandy v dynamických proteinech (Akronym: FLigComp)
Investor: Grantová agentura ČR, Methods of Identification and Visualization of Tunnels for Flexible Ligands in Dynamic Proteins