2017
Policy learning in continuous-time Markov decision processes using Gaussian Processes
BRÁZDIL, Tomáš, Ezio BARTOCCI, Dimitrios MILIOS, Guido SANGUINETTI, Luca BORTOLUSSI et. al.Základní údaje
Originální název
Policy learning in continuous-time Markov decision processes using Gaussian Processes
Autoři
BRÁZDIL, Tomáš (203 Česká republika, garant, domácí), Ezio BARTOCCI (380 Itálie), Dimitrios MILIOS (300 Řecko), Guido SANGUINETTI (380 Itálie) a Luca BORTOLUSSI (380 Itálie)
Vydání
Performance Evaluation, 2017, 0166-5316
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.786
Kód RIV
RIV/00216224:14330/17:00107689
Organizační jednotka
Fakulta informatiky
UT WoS
000413797400005
Klíčová slova anglicky
continuous-time Markov decision processes; reachability; gradient descent
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 4. 2020 07:51, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Continuous-time Markov decision processes provide a very powerful mathematical framework to solve policy-making problems in a wide range of applications, ranging from the control of populations to cyber–physical systems. The key problem to solve for these models is to efficiently compute an optimal policy to control the system in order to maximise the probability of satisfying a set of temporal logic specifications. Here we introduce a novel method based on statistical model checking and an unbiased estimation of a functional gradient in the space of possible policies. Our approach presents several advantages over the classical methods based on discretisation techniques, as it does not assume the a-priori knowledge of a model that can be replaced by a black-box, and does not suffer from state-space explosion. The use of a stochastic moment-based gradient ascent algorithm to guide our search considerably improves the efficiency of learning policies and accelerates the convergence using the momentum term. We demonstrate the strong performance of our approach on two examples of non-linear population models: an epidemiology model with no permanent recovery and a queuing system with non-deterministic choice.
Návaznosti
GA15-17564S, projekt VaV |
|