2019
Understanding the Gap between 2D and 3D Skeleton-Based Action Recognition
ELIÁŠ, Petr, Jan SEDMIDUBSKÝ a Pavel ZEZULAZákladní údaje
Originální název
Understanding the Gap between 2D and 3D Skeleton-Based Action Recognition
Autoři
ELIÁŠ, Petr (203 Česká republika, domácí), Jan SEDMIDUBSKÝ (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, domácí)
Vydání
Neuveden, 21st IEEE International Symposium on Multimedia (ISM), od s. 192-195, 4 s. 2019
Nakladatel
IEEE Computer Society
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/19:00107709
Organizační jednotka
Fakulta informatiky
ISBN
978-1-72815-606-4
UT WoS
000528909200030
Klíčová slova anglicky
2D skeleton data;3D skeleton data;action recognition;LSTM;motion data understanding
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 4. 2020 00:07, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Large volumes of RGB video data are recorded and processed every day. One of the embedded data modality within these videos is the information about human motions. Up to now, this information has been almost unfeasible to extract, and thus human-motion understanding research has been mainly limited to 3D skeleton data captured by dedicated hardware only. However, with recent advances in computer vision, it is possible to estimate 2D skeleton sequences from ordinary videos quite accurately. Such 2D skeleton data possess an excellent potential for future motion understanding applications. In this paper, we adopt a state-of-the-art bidirectional LSTM network to analyze the accuracy gap in the expressive power of 2D and 3D skeleton data recorded simultaneously on a high number of 20k human actions. We further examine how the missing depth information and fluctuations in 2D skeleton sizes influence the recognition rate. We also demonstrate the suitability of 2D skeleton data for general daily activity recognition by reporting baselines on the PKU-MMD dataset.
Návaznosti
GA19-02033S, projekt VaV |
|