2019
Bioinformatic pipelines for whole transcriptome sequencing data exploitation in leukemia patients with complex structural variants
HYNŠT, Jakub, Karla PLEVOVÁ, Lenka RADOVÁ, Vojtěch BYSTRÝ, Karol PÁL et. al.Základní údaje
Originální název
Bioinformatic pipelines for whole transcriptome sequencing data exploitation in leukemia patients with complex structural variants
Autoři
HYNŠT, Jakub (203 Česká republika, domácí), Karla PLEVOVÁ (203 Česká republika, domácí), Lenka RADOVÁ (203 Česká republika, domácí), Vojtěch BYSTRÝ (203 Česká republika, domácí), Karol PÁL (703 Slovensko, domácí) a Šárka POSPÍŠILOVÁ (203 Česká republika, garant, domácí)
Vydání
PeerJ, London, PEERJ INC, 2019, 2167-8359
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30204 Oncology
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.379
Kód RIV
RIV/00216224:14740/19:00108521
Organizační jednotka
Středoevropský technologický institut
UT WoS
000471213700009
Klíčová slova anglicky
Chromothripsis; Complex structural variants; Fusion gene; Gene expression; Bioinformatic pipeline; Next-generation sequencing; Leukemia; Transcriptomics; Chronic lymphocytic leukemia; Statistics
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 2. 11. 2024 16:28, Mgr. Adéla Pešková
Anotace
V originále
Background. Extensive genome rearrangements, known as chromothripsis, have been recently identified in several cancer types. Chromothripsis leads to complex structural variants (cSVs) causing aberrant gene expression and the formation of de novo fusion genes, which can trigger cancer development, or worsen its clinical course. The functional impact of cSVs can be studied at the RNA level using whole transcriptome sequencing (total RNA-Seq). It represents a powerful tool for discovering, profiling, and quantifying changes of gene expression in the overall genomic context. However, bioinformatic analysis of transcriptomic data, especially in cases with cSVs, is a complex and challenging task, and the development of proper bioinformatic tools for transcriptome studies is necessary. Methods. We designed a bioinformatic workflow for the analysis of total RNA-Seq data consisting of two separate parts (pipelines): The first pipeline incorporates a statistical solution for differential gene expression analysis in a biologically heterogeneous sample set. We utilized results from transcriptomic arrays which were carried out in parallel to increase the precision of the analysis. The second pipeline is used for the identification of de novo fusion genes. Special attention was given to the filtering of false positives (FPs), which was achieved through consensus fusion calling with several fusion gene callers. We applied the workflow to the data obtained from ten patients with chronic lymphocytic leukemia (CLL) to describe the consequences of their cSVs in detail. The fusion genes identified by our pipeline were correlated with genomic break-points detected by genomic arrays. Results. We set up a novel solution for differential gene expression analysis of individual samples and de novo fusion gene detection from total RNA-Seq data. The results of the differential gene expression analysis were concordant with results obtained by transcriptomic arrays, which demonstrates the analytical capabilities of our method. We also showed that the consensus fusion gene detection approach was able to identify true positives (TPs) efficiently. Detected coordinates of fusion gene junctions were in concordance with genomic breakpoints assessed using genomic arrays. Discussion. By applying our methods to real clinical samples, we proved that our approach for total RNA-Seq data analysis generates results consistent with other genomic analytical techniques. The data obtained by our analyses provided clues for the study of the biological consequences of cSVs with far-reaching implications for clinical outcome and management of cancer patients. The bioinformatic workflow is also widely applicable for addressing other research questions in different contexts, for which transcriptomic data are generated.
Návaznosti
LM2015091, projekt VaV |
| ||
MUNI/A/1105/2018, interní kód MU |
| ||
NV15-31834A, projekt VaV |
|