2019
Brain Morphometry Methods for Feature Extraction in Random Subspace Ensemble Neural Network Classification of First-Episode Schizophrenia
VYŠKOVSKÝ, Roman, Daniel SCHWARZ a Tomáš KAŠPÁREKZákladní údaje
Originální název
Brain Morphometry Methods for Feature Extraction in Random Subspace Ensemble Neural Network Classification of First-Episode Schizophrenia
Autoři
VYŠKOVSKÝ, Roman (203 Česká republika, garant, domácí), Daniel SCHWARZ (203 Česká republika, domácí) a Tomáš KAŠPÁREK (203 Česká republika, domácí)
Vydání
Neural Computation, CAMBRIDGE, MIT Press, 2019, 0899-7667
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30103 Neurosciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.505
Kód RIV
RIV/00216224:14110/19:00108524
Organizační jednotka
Lékařská fakulta
UT WoS
000476941800004
Klíčová slova anglicky
brain morphometry; schizophrenia; magnetic resonance imaging
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 10. 2019 14:12, Mgr. Tereza Miškechová
Anotace
V originále
Machine learning (ML) is a growing field that provides tools for automatic pattern recognition. The neuroimaging community currently tries to take advantage of ML in order to develop an auxiliary diagnostic tool for schizophrenia diagnostics. In this letter, we present a classification framework based on features extracted from magnetic resonance imaging (MRI) data using two automatic whole-brain morphometry methods: voxel-based (VBM) and deformation-based morphometry (DBM). The framework employs a random subspace ensemble-based artificial neural network classifier-in particular, a multilayer perceptron (MLP). The framework was tested on data from first-episode schizophrenia patients and healthy controls. The experiments differed in terms of feature extraction methods, using VBM, DBM, and a combination of both morphometry methods. Thus, features of different types were available for model adaptation. As we expected, the combination of features increased the MLP classification accuracy up to 73.12%-an improvement of 5% versus MLP-based only on VBM or DBM features. To further verify the findings, other comparisons using support vector machines in place of MLPs were made within the framework. However, it cannot be concluded that any classifier was better than another.
Návaznosti
NV17-33136A, projekt VaV |
|