2019
Multi-feature localization of epileptic foci from interictal, intracranial EEG
CIMBÁLNÍK, Jan, Petr KLIMES, Vladimir SLADKY, Petr NEJEDLY, Pavel JURAK et. al.Základní údaje
Originální název
Multi-feature localization of epileptic foci from interictal, intracranial EEG
Autoři
CIMBÁLNÍK, Jan (203 Česká republika, garant), Petr KLIMES (203 Česká republika), Vladimir SLADKY (203 Česká republika), Petr NEJEDLY (203 Česká republika), Pavel JURAK (203 Česká republika), Martin PAIL (203 Česká republika, domácí), Robert ROMAN (203 Česká republika, domácí), Pavel DANIEL (203 Česká republika, domácí), Hari GURAGAIN (840 Spojené státy), Benjamin BRINKMANN (840 Spojené státy), Milan BRÁZDIL (203 Česká republika, domácí) a Greg WORRELL (840 Spojené státy)
Vydání
Clinical Neurophysiology, Clare, Elsevier Ireland, 2019, 1388-2457
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30103 Neurosciences
Stát vydavatele
Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.214
Kód RIV
RIV/00216224:14110/19:00110969
Organizační jednotka
Lékařská fakulta
UT WoS
000485832400022
Klíčová slova anglicky
Drug resistant epilepsy; Epileptogenic zone localization; Multi-feature approach; High frequency oscillations; Connectivity; Machine learning
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 10. 2024 10:41, Ing. Jana Kuchtová
Anotace
V originále
Objective: When considering all patients with focal drug-resistant epilepsy, as high as 40-50% of patients suffer seizure recurrence after surgery. To achieve seizure freedom without side effects, accurate localization of the epileptogenic tissue is crucial before its resection. We investigate an automated, fast, objective mapping process that uses only interictal data. Methods: We propose a novel approach based on multiple iEEG features, which are used to train a support vector machine (SVM) model for classification of iEEG electrodes as normal or pathologic using 30 min of inter-ictal recording. Results: The tissue under the iEEG electrodes, classified as epileptogenic, was removed in 17/18 excellent outcome patients and was not entirely resected in 8/10 poor outcome patients. The overall best result was achieved in a subset of 9 excellent outcome patients with the area under the receiver operating curve = 0.95. Conclusion: SVM models combining multiple iEEG features show better performance than algorithms using a single iEEG marker. Multiple iEEG and connectivity features in presurgical evaluation could improve epileptogenic tissue localization, which may improve surgical outcome and minimize risk of side effects. Significance: In this study, promising results were achieved in localization of epileptogenic regions by SVM models that combine multiple features from 30 min of inter-ictal iEEG recordings. (C) 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Návaznosti
LM2015062, projekt VaV |
| ||
90062, velká výzkumná infrastruktura |
|