2019
Addressing the relocation bias in a long temperature record by means of land cover assessment
KNERR, Isabel, Manuel DIENST, Jenny LINDEN, Petr DOBROVOLNÝ, Jan GELETIČ et. al.Základní údaje
Originální název
Addressing the relocation bias in a long temperature record by means of land cover assessment
Autoři
KNERR, Isabel (276 Německo, garant), Manuel DIENST (276 Německo), Jenny LINDEN (752 Švédsko), Petr DOBROVOLNÝ (203 Česká republika, domácí), Jan GELETIČ (203 Česká republika), Ulf BÜNTGEN (276 Německo, domácí) a Jan ESPER (276 Německo)
Vydání
Theoretical and Applied Climatology, Wien, Springer Wien, 2019, 0177-798X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10509 Meteorology and atmospheric sciences
Stát vydavatele
Rakousko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.882
Kód RIV
RIV/00216224:14310/19:00107722
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000477054700085
Klíčová slova anglicky
urban heat island; precipitation; air temperature; land cover; homogenization; vegetation; impact
Štítky
Příznaky
Recenzováno
Změněno: 29. 4. 2020 11:21, Mgr. Marie Šípková, DiS.
Anotace
V originále
The meteorological measurements in Brno, Czech Republic, is among the world's oldest measurements, operating since 1799. Like many others, station was initially installed in the city center, relocated several times, and currently operates at an airport outside the city. These geographical changes potentially bias the temperature record due to different station surroundings and varying degrees of urban heat island effects. Here, we assess the influence of land cover on spatial temperature variations in Brno, capitol of Moravia and the second largest city of the Czech Republic. We therefore use a unique dataset of half-hourly resolved measurements from 11 stations spanning a period of more than 3.5years and apply this information to reduce relocation biases in the long-term temperature record from 1799 to the present. Regression analysis reveals a significant warming influence from nearby buildings and a cooling influence from vegetation, explaining up to 80% of the spatial variability within our network. The influence is strongest during the warm season and for land cover changes between 300 and 500m around stations. Relying on historical maps and recent satellite data, it was possible to capture the building densities surrounding the past locations of the meteorological station. Using the previously established land cover-temperature relation, the anthropogenic warming for each measurement site could be quantified and hence eliminated from the temperature record accordingly, thereby increasing the long-term warming trend.
Návaznosti
GA205/09/1297, projekt VaV |
|