J 2019

Suppressed effective viscosity in the bulk intergalactic plasma

ZHURAVLEVA, I., E. CHURAZOV, A.A. SCHEKOCHIHIN, S.W. ALLEN, A. VIKHLININ et. al.

Základní údaje

Originální název

Suppressed effective viscosity in the bulk intergalactic plasma

Autoři

ZHURAVLEVA, I. (643 Rusko), E. CHURAZOV (643 Rusko), A.A. SCHEKOCHIHIN (643 Rusko), S.W. ALLEN (826 Velká Británie a Severní Irsko), A. VIKHLININ (643 Rusko) a Norbert WERNER (703 Slovensko, garant, domácí)

Vydání

NATURE ASTRONOMY, LONDON, NATURE PUBLISHING GROUP, 2019, 2397-3366

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 11.518

Kód RIV

RIV/00216224:14310/19:00111553

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000485096800014

Klíčová slova anglicky

intra-cluster medium

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 10. 11. 2022 12:17, Mgr. Marie Šípková, DiS.

Anotace

V originále

Transport properties, such as viscosity and thermal conduction, of the hot intergalactic plasma in clusters of galaxies are largely unknown. Whereas for laboratory plasmas these characteristics are derived from the gas density and temperature(1), such recipes can be fundamentally different for the intergalactic plasma(2) owing to a low rate of particle collisions and a weak magnetic field(3). In numerical simulations, these unknowns can often be avoided by modelling these plasmas as hydrodynamic fluids(4-6), even though local, non-hydrodynamic features observed in clusters contradict this assumptions(7-)(9). Using deep Chandra observations of the Coma Cluster(10,11), we probe gas fluctuations in intergalactic medium down to spatial scales where the transport processes should prominently manifest themselves-provided that hydrodynamic models(12) with pure Coulomb collision rates are indeed adequate. We do not find evidence of such transport processes, implying that the effective isotropic viscosity is orders of magnitude smaller than naively expected. This indicates either an enhanced collision rate in the plasma due to particle scattering off microfluctuations caused by plasma instabilities(2,13,24) or that the transport processes are anisotropic with respect to the local magnetic field(15). This also means that numerical models with high Reynolds number appear more consistent with observations. Our results demonstrate that observations of turbulence in clusters(16,17) are giving rise to a branch of astrophysics that can sharpen theoretical views on galactic plasmas.