2019
Methodology of a Novel Risk Stratification Algorithm for Patients with Multiple Myeloma in the Relapsed Setting
BOUWMEESTER, Walter, Andrew BRIGGS, Ben VAN HOUT, Roman HAJEK, Sebastian GONZALEZ-MCQUIRE et. al.Základní údaje
Originální název
Methodology of a Novel Risk Stratification Algorithm for Patients with Multiple Myeloma in the Relapsed Setting
Autoři
BOUWMEESTER, Walter (528 Nizozemské království, garant), Andrew BRIGGS (826 Velká Británie a Severní Irsko), Ben VAN HOUT (826 Velká Británie a Severní Irsko), Roman HAJEK (203 Česká republika), Sebastian GONZALEZ-MCQUIRE (756 Švýcarsko), Marco CAMPIONI (756 Švýcarsko), Lucy DECOSTA (826 Velká Británie a Severní Irsko) a Lucie BROŽOVÁ (203 Česká republika, domácí)
Vydání
ONCOLOGY AND THERAPY, NEW YORK, SPRINGER, 2019, 2366-1070
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30204 Oncology
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14110/19:00111947
Organizační jednotka
Lékařská fakulta
UT WoS
000493779800001
Klíčová slova anglicky
Algorithm; Multiple myeloma; Prognostic model; Risk; Survival
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 1. 2020 15:02, Mgr. Tereza Miškechová
Anotace
V originále
Introduction Risk stratification tools provide valuable information to inform treatment decisions. Existing algorithms for patients with multiple myeloma (MM) were based on patients with newly diagnosed disease, and these have not been validated in the relapsed setting or in routine clinical practice. We developed a risk stratification algorithm (RSA) for patients with MM at initiation of second-line (2L) treatment, based on data from the Czech Registry of Monoclonal Gammopathies. Methods Predictors of overall survival (OS) at 2L treatment were identified using Cox proportional hazards models and backward selection. Risk scores were obtained by multiplying the hazard ratios for each predictor. The K-adaptive partitioning for survival (KAPS) algorithm defined four groups of stratification based on individual risk scores. Results Performance of the RSA was assessed using Nagelkerke's R-2 test and Harrell's concordance index through Kaplan-Meier analysis of OS data. Prognostic groups were successfully defined based on real-world data. Use of a multiplicative score based on Cox modeling and KAPS to define cut-off values was effective. Conclusion Through innovative methods of risk assessment and collaboration between physicians and statisticians, the RSA was capable of stratifying patients at 2L treatment by survival expectations. This approach can be used to develop clinical decision-making tools in other disease areas to improve patient management. Funding Amgen Europe GmbH.