J 2019

Methodology of a Novel Risk Stratification Algorithm for Patients with Multiple Myeloma in the Relapsed Setting

BOUWMEESTER, Walter, Andrew BRIGGS, Ben VAN HOUT, Roman HAJEK, Sebastian GONZALEZ-MCQUIRE et. al.

Základní údaje

Originální název

Methodology of a Novel Risk Stratification Algorithm for Patients with Multiple Myeloma in the Relapsed Setting

Autoři

BOUWMEESTER, Walter (528 Nizozemské království, garant), Andrew BRIGGS (826 Velká Británie a Severní Irsko), Ben VAN HOUT (826 Velká Británie a Severní Irsko), Roman HAJEK (203 Česká republika), Sebastian GONZALEZ-MCQUIRE (756 Švýcarsko), Marco CAMPIONI (756 Švýcarsko), Lucy DECOSTA (826 Velká Británie a Severní Irsko) a Lucie BROŽOVÁ (203 Česká republika, domácí)

Vydání

ONCOLOGY AND THERAPY, NEW YORK, SPRINGER, 2019, 2366-1070

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30204 Oncology

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/00216224:14110/19:00111947

Organizační jednotka

Lékařská fakulta

UT WoS

000493779800001

Klíčová slova anglicky

Algorithm; Multiple myeloma; Prognostic model; Risk; Survival

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 16. 1. 2020 15:02, Mgr. Tereza Miškechová

Anotace

V originále

Introduction Risk stratification tools provide valuable information to inform treatment decisions. Existing algorithms for patients with multiple myeloma (MM) were based on patients with newly diagnosed disease, and these have not been validated in the relapsed setting or in routine clinical practice. We developed a risk stratification algorithm (RSA) for patients with MM at initiation of second-line (2L) treatment, based on data from the Czech Registry of Monoclonal Gammopathies. Methods Predictors of overall survival (OS) at 2L treatment were identified using Cox proportional hazards models and backward selection. Risk scores were obtained by multiplying the hazard ratios for each predictor. The K-adaptive partitioning for survival (KAPS) algorithm defined four groups of stratification based on individual risk scores. Results Performance of the RSA was assessed using Nagelkerke's R-2 test and Harrell's concordance index through Kaplan-Meier analysis of OS data. Prognostic groups were successfully defined based on real-world data. Use of a multiplicative score based on Cox modeling and KAPS to define cut-off values was effective. Conclusion Through innovative methods of risk assessment and collaboration between physicians and statisticians, the RSA was capable of stratifying patients at 2L treatment by survival expectations. This approach can be used to develop clinical decision-making tools in other disease areas to improve patient management. Funding Amgen Europe GmbH.