J 2019

Spectral domain optical coherence tomography based imaging biomarkers for diabetic retinopathy

SAXENA, Sandeep, Martin CAPRNDA, Surabhi RUIA, Senthamizh PRASAD, Ankita ANKITA et. al.

Základní údaje

Originální název

Spectral domain optical coherence tomography based imaging biomarkers for diabetic retinopathy

Autoři

SAXENA, Sandeep (356 Indie), Martin CAPRNDA (703 Slovensko), Surabhi RUIA (356 Indie), Senthamizh PRASAD (356 Indie), Ankita ANKITA (356 Indie), Julia FEDOTOVA (643 Rusko), Peter KRUŽLIAK (703 Slovensko, garant, domácí) a Vladimir KRASNIK (703 Slovensko)

Vydání

ENDOCRINE, NEW YORK, SPRINGER, 2019, 1355-008X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30202 Endocrinology and metabolism

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.235

Kód RIV

RIV/00216224:14110/19:00112408

Organizační jednotka

Lékařská fakulta

UT WoS

000504207800010

Klíčová slova anglicky

Diabetic retinopathy; Diabetic macular edema; Central subfield thickness; Cube average thickness; Cube volume; Spectral-domain optical coherence tomography

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 24. 1. 2020 14:49, Mgr. Tereza Miškechová

Anotace

V originále

To evaluate the role of central subfield thickness (CST), cube average thickness (CAT), and cube volume (CV) as imaging biomarkers for severity of diabetic retinopathy within the ETDRS-based grades of retinopathy using spectral domain optical coherence tomography (SD-OCT). This study aims to evaluate the role of macular CST, CAT, and CV on SD-OCT as imaging biomarkers for severity of DR. One hundred ninety-four consecutive cases of type 2 diabetes mellitus were divided according to ETDRS classification: diabetes mellitus without retinopathy (No DR; n = 65), nonproliferative diabetic retinopathy (NPDR; n = 66), and proliferative diabetic retinopathy (PDR; n = 63). Sixty-three healthy controls were included. CST, CAT, and CV were analyzed using SD-OCT. Data were analyzed statistically. Analysis of variance revealed a significant increase in levels of CST, CAT, CV, and LogMAR visual acuity with the increase in severity of DR. Independent t-test revealed significant difference in CST, CAT, and CV between cases with DME and cases without DME. On multivariate linear regression analysis, increase in CST, CAT, and CV were found to indicate the increase in severity of DR. SD-OCT-based imaging biomarkers CST, CAT, and CV are effective tools for documenting the severity of diabetic retinopathy. These imaging biomarkers serve as significant indicators of severity of disease.