J 2019

EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions

LABOUNEK, R., D.A. BRIDWELL, Radek MAREČEK, Martin LAMOŠ, Michal MIKL et. al.

Základní údaje

Originální název

EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions

Autoři

LABOUNEK, R. (203 Česká republika), D.A. BRIDWELL (840 Spojené státy), Radek MAREČEK (203 Česká republika, domácí), Martin LAMOŠ (203 Česká republika, domácí), Michal MIKL (203 Česká republika, domácí), P. BEDNARIK (203 Česká republika), J. BASTINEC (203 Česká republika), Tomáš SLAVÍČEK (203 Česká republika, domácí), P. HLUSTIK (203 Česká republika), Milan BRÁZDIL (203 Česká republika, garant, domácí) a J. JAN (203 Česká republika)

Vydání

Journal of Neuroscience Methods, AMSTERDAM, ELSEVIER SCIENCE BV, 2019, 0165-0270

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30103 Neurosciences

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.214

Kód RIV

RIV/00216224:14740/19:00112798

Organizační jednotka

Středoevropský technologický institut

UT WoS

000463294200004

Klíčová slova anglicky

Simultaneous EEG-fMRI; Group-ICA; Spatiospectral patterns; Large scale brain networks; Multi-subject blind source separation; Resting-state; Semantic decision; Visual oddball

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 7. 10. 2024 10:47, Ing. Jana Kuchtová

Anotace

V originále

Background: Spatial and temporal resolution of brain network activity can be improved by combining different modalities. Functional Magnetic Resonance Imaging (fMRI) provides full brain coverage with limited temporal resolution, while electroencephalography (EEG), estimates cortical activity with high temporal resolution. Combining them may provide improved network characterization. New Method: We examined relationships between EEG spatiospectral pattern timecourses and concurrent fMRI BOLD signals using canonical hemodynamic response function (HRF) with 1st and 2nd temporal derivatives in voxel-wise general linear models (GLM). HRF shapes were derived from EEG-fMRI time courses during "resting-state", visual oddball and semantic decision paradigms. Results: The resulting GLM F-maps self-organized into several different large-scale brain networks (LSBNs) often with different timing between EEG and fMRI revealed through differences in GLM-derived HRF shapes (e.g., with a lower time to peak than the canonical HRF). We demonstrate that some EEG spatiospectral patterns (related to concurrent fMRI) are weakly task-modulated. Comparison with existing method(s): Previously, we demonstrated 14 independent EEG spatiospectral patterns within this EEG dataset, stable across the resting-state, visual oddball and semantic decision paradigms. Here, we demonstrate that their time courses are significantly correlated with fMRI dynamics organized into LSBN structures. EEG-fMRI derived HRF peak appears earlier than the canonical HRF peak, which suggests limitations when assuming a canonical HRF shape in EEG-fMRI. Conclusions: This is the first study examining EEG-fMRI relationships among independent EEG spatiospectral patterns over different paradigms. The findings highlight the importance of considering different HRF shapes when spatiotemporally characterizing brain networks using EEG and fMRI.

Návaznosti

ED1.1.00/02.0068, projekt VaV
Název: CEITEC - central european institute of technology
ED3.2.00/08.0144, projekt VaV
Název: CERIT Scientific Cloud
LM2010005, projekt VaV
Název: Velká infrastruktura CESNET (Akronym: VI CESNET)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Velká infrastruktura CESNET
90062, velká výzkumná infrastruktura
Název: Czech-BioImaging