2019
NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram
KLIMES, Petr, Jan CIMBÁLNÍK, Milan BRÁZDIL, Jeffery HALL, Francois DUBEAU et. al.Základní údaje
Originální název
NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram
Autoři
KLIMES, Petr (203 Česká republika), Jan CIMBÁLNÍK (203 Česká republika), Milan BRÁZDIL (203 Česká republika, domácí), Jeffery HALL (124 Kanada), Francois DUBEAU (124 Kanada), Jean GOTMAN (124 Kanada) a Brigit FRAUSCHER (124 Kanada, garant)
Vydání
Epilepsia, Blackwell Science, 2019, 0013-9580
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30210 Clinical neurology
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 6.040
Kód RIV
RIV/00216224:14110/19:00113177
Organizační jednotka
Lékařská fakulta
UT WoS
000545973100008
Klíčová slova anglicky
connectivity; drug-resistant epilepsy; high-frequency oscillations; machine learning; sleep-wake cycle
Příznaky
Mezinárodní význam
Změněno: 17. 7. 2020 12:45, Mgr. Tereza Miškechová
Anotace
V originále
OBJECTIVE: Interictal epileptiform anomalies such as epileptiform discharges or high-frequency oscillations show marked variations across the sleep-wake cycle. This study investigates which state of vigilance is the best to localize the epileptogenic zone (EZ) in interictal intracranial electroencephalography (EEG). METHODS: Thirty patients with drug-resistant epilepsy undergoing stereo-EEG (SEEG)/sleep recording and subsequent open surgery were included; 13 patients (43.3%) had good surgical outcome (Engel class I). Sleep was scored following standard criteria. Multiple features based on the interictal EEG (interictal epileptiform discharges, high-frequency oscillations, univariate and bivariate features) were used to train a support vector machine (SVM) model to classify SEEG contacts placed in the EZ. The performance of the algorithm was evaluated by the mean area under the receiver-operating characteristic (ROC) curves (AUCs) and positive predictive values (PPVs) across 10-minute sections of wake, non-rapid eye movement sleep (NREM) stages N2 and N3, REM sleep, and their combination. RESULTS: Highest AUCs were achieved in NREM sleep stages N2 and N3 compared to wakefulness and REM (P < .01). There was no improvement when using a combination of all four states (P > .05); the best performing features in the combined state were selected from NREM sleep. There were differences between good (Engel I) and poor (Engel II-IV) outcomes in PPV (P < .05) and AUC (P < .01) across all states. The SVM multifeature approach outperformed spikes and high-frequency oscillations (P < .01) and resulted in results similar to those of the seizure-onset zone (SOZ; P > .05). SIGNIFICANCE: Sleep improves the localization of the EZ with best identification obtained in NREM sleep stages N2 and N3. Results based on the multifeature classification in 10 minutes of NREM sleep were not different from the results achieved by the SOZ based on 12.7 days of seizure monitoring. This finding might ultimately result in a more time-efficient intracranial presurgical investigation of focal epilepsy.