J 2019

NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram

KLIMES, Petr, Jan CIMBÁLNÍK, Milan BRÁZDIL, Jeffery HALL, Francois DUBEAU et. al.

Základní údaje

Originální název

NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram

Autoři

KLIMES, Petr (203 Česká republika), Jan CIMBÁLNÍK (203 Česká republika), Milan BRÁZDIL (203 Česká republika, domácí), Jeffery HALL (124 Kanada), Francois DUBEAU (124 Kanada), Jean GOTMAN (124 Kanada) a Brigit FRAUSCHER (124 Kanada, garant)

Vydání

Epilepsia, Blackwell Science, 2019, 0013-9580

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30210 Clinical neurology

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 6.040

Kód RIV

RIV/00216224:14110/19:00113177

Organizační jednotka

Lékařská fakulta

UT WoS

000545973100008

Klíčová slova anglicky

connectivity; drug-resistant epilepsy; high-frequency oscillations; machine learning; sleep-wake cycle

Štítky

Příznaky

Mezinárodní význam
Změněno: 17. 7. 2020 12:45, Mgr. Tereza Miškechová

Anotace

V originále

OBJECTIVE: Interictal epileptiform anomalies such as epileptiform discharges or high-frequency oscillations show marked variations across the sleep-wake cycle. This study investigates which state of vigilance is the best to localize the epileptogenic zone (EZ) in interictal intracranial electroencephalography (EEG). METHODS: Thirty patients with drug-resistant epilepsy undergoing stereo-EEG (SEEG)/sleep recording and subsequent open surgery were included; 13 patients (43.3%) had good surgical outcome (Engel class I). Sleep was scored following standard criteria. Multiple features based on the interictal EEG (interictal epileptiform discharges, high-frequency oscillations, univariate and bivariate features) were used to train a support vector machine (SVM) model to classify SEEG contacts placed in the EZ. The performance of the algorithm was evaluated by the mean area under the receiver-operating characteristic (ROC) curves (AUCs) and positive predictive values (PPVs) across 10-minute sections of wake, non-rapid eye movement sleep (NREM) stages N2 and N3, REM sleep, and their combination. RESULTS: Highest AUCs were achieved in NREM sleep stages N2 and N3 compared to wakefulness and REM (P < .01). There was no improvement when using a combination of all four states (P > .05); the best performing features in the combined state were selected from NREM sleep. There were differences between good (Engel I) and poor (Engel II-IV) outcomes in PPV (P < .05) and AUC (P < .01) across all states. The SVM multifeature approach outperformed spikes and high-frequency oscillations (P < .01) and resulted in results similar to those of the seizure-onset zone (SOZ; P > .05). SIGNIFICANCE: Sleep improves the localization of the EZ with best identification obtained in NREM sleep stages N2 and N3. Results based on the multifeature classification in 10 minutes of NREM sleep were not different from the results achieved by the SOZ based on 12.7 days of seizure monitoring. This finding might ultimately result in a more time-efficient intracranial presurgical investigation of focal epilepsy.