2020
MUST: Minimal Unsatisfiable Subsets Enumeration Tool
BENDÍK, Jaroslav a Ivana ČERNÁZákladní údaje
Originální název
MUST: Minimal Unsatisfiable Subsets Enumeration Tool
Autoři
BENDÍK, Jaroslav (203 Česká republika, garant, domácí) a Ivana ČERNÁ (203 Česká republika, domácí)
Vydání
Neuveden, Tools and Algorithms for the Construction and Analysis of Systems, od s. 135-152, 18 s. 2020
Nakladatel
Springer International Publishing
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/20:00115396
Organizační jednotka
Fakulta informatiky
ISBN
978-3-030-45189-9
ISSN
Klíčová slova anglicky
Minimal unsatisfiable subsets;Unsatisfiability analysis;Infeasibility analysis;MUS;Diagnosis
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 5. 2021 05:40, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
In many areas of computer science, we are given an unsatisfiable set of constraints with the goal to provide an insight into the unsatisfiability. One of common approaches is to identify minimal unsatisfiable subsets (MUSes) of the constraint set. The more MUSes are identified, the better insight is obtained. However, since there can be up to exponentially many MUSes, their complete enumeration might be intractable. Therefore, we focus on algorithms that enumerate MUSes online, i.e. one by one, and thus can find at least some MUSes even in the intractable cases. Since MUSes find applications in different constraint domains and new applications still arise, there have been proposed several domain agnostic algorithms. Such algorithms can be applied in any constraint domain and thus theoretically serve as ready-to-use solutions for all the emerging applications. However, there are almost no domain agnostic tools, i.e. tools that both implement domain agnostic algorithms and can be easily extended to support any constraint domain. In this work, we close this gap by introducing a domain agnostic tool called MUST. Our tool outperforms other existing domain agnostic tools and moreover, it is even competitive to fully domain specific solutions.
Návaznosti
EF16_019/0000822, projekt VaV |
| ||
MUNI/A/1050/2019, interní kód MU |
| ||
MUNI/A/1076/2019, interní kód MU |
|