J 2019

Engineered in situ biogeochemical transformation as a secondary treatment following ISCO - A field test

NEMECEK, Jan; Magda NECHANICKA; Roman SPANEK; František EICHLER; Josef ZEMAN et. al.

Základní údaje

Originální název

Engineered in situ biogeochemical transformation as a secondary treatment following ISCO - A field test

Autoři

NEMECEK, Jan; Magda NECHANICKA; Roman SPANEK; František EICHLER (203 Česká republika); Josef ZEMAN (203 Česká republika, garant, domácí) a Miroslav ČERNÍK (203 Česká republika)

Vydání

Chemosphere, OXFORD, PERGAMON-ELSEVIER SCIENCE LTD, 2019, 0045-6535

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10511 Environmental sciences

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 5.778

Kód RIV

RIV/00216224:14310/19:00113719

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000496896700075

EID Scopus

2-s2.0-85069906356

Klíčová slova anglicky

Chlorinated solvents; Biogeochemical transformation; Indigenous microorganisms; Molecular tools; Solid phase analysis; Geochemical modelling

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 22. 4. 2020 11:03, Mgr. Marie Novosadová Šípková, DiS.

Anotace

V originále

ISCO using activated sodium persulphate is a widely used technology for treating chlorinated solvent source zones. In sensitive areas, however, high groundwater sulphate concentrations following treatment may be a drawback. In situ biogeochemical transformation, a technology that degrades contaminants via reduced iron minerals formed by microbial activity, offers a potential solution for such sites, the bioreduction of sulphate and production of iron sulphides that abiotically degrade chlorinated ethenes acting as a secondary technology following ISCO. This study assesses this approach in the field using hydrochemical and molecular tools, solid phase analysis and geochemical modelling. Following a neutralisation and bioaugmentation, favourable conditions for iron- and sulphate-reducers were created, resulting in a remarkable increase in their relative abundance. The abundance of dechlorinating bacteria (Dehalococcoides mccartyi, Dehalobacter sp. and Desulfitobacterium spp.) remained low throughout this process. The activity of iron- and sulphate-reducers was further stimulated through application of magnetite plus starch and microiron plus starch, resulting in an increase in ferrous iron concentration (from