2019
The Parameterized Complexity of Cascading Portfolio Scheduling
EIBEN, Eduard, Robert GANIAN, Iyad KANJ a Stefan SZEIDERZákladní údaje
Originální název
The Parameterized Complexity of Cascading Portfolio Scheduling
Autoři
EIBEN, Eduard (703 Slovensko), Robert GANIAN (203 Česká republika, garant, domácí), Iyad KANJ (840 Spojené státy) a Stefan SZEIDER (40 Rakousko)
Vydání
USA, Advances in Neural Information Processing Systems 32 (NIPS 2019), od s. 7666-7676, 11 s. 2019
Nakladatel
Neural Information Processing Systems Foundation, Inc.
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/19:00113727
Organizační jednotka
Fakulta informatiky
ISBN
978-1-7281-1044-8
UT WoS
000534424307066
Klíčová slova anglicky
Parameterized Complexity
Změněno: 16. 5. 2022 15:14, Mgr. Michal Petr
Anotace
V originále
Cascading portfolio scheduling is a static algorithm selection strategy which uses a sample of test instances to compute an optimal ordering (a cascading schedule) of a portfolio of available algorithms. The algorithms are then applied to each future instance according to this cascading schedule, until some algorithm in the schedule succeeds. Cascading algorithm scheduling has proven to be effective in several applications, including QBF solving and the generation of ImageNet classification models. It is known that the computation of an optimal cascading schedule in the offline phase is NP-hard. In this paper we study the parameterized complexity of this problem and establish its fixed-parameter tractability by utilizing structural properties of the success relation between algorithms and test instances. Our findings are significant as they reveal that in spite of the intractability of the problem in its general form, one can indeed exploit sparseness or density of the success relation to obtain non-trivial runtime guarantees for finding an optimal cascading schedule.