D 2019

The Parameterized Complexity of Cascading Portfolio Scheduling

EIBEN, Eduard, Robert GANIAN, Iyad KANJ a Stefan SZEIDER

Základní údaje

Originální název

The Parameterized Complexity of Cascading Portfolio Scheduling

Autoři

EIBEN, Eduard (703 Slovensko), Robert GANIAN (203 Česká republika, garant, domácí), Iyad KANJ (840 Spojené státy) a Stefan SZEIDER (40 Rakousko)

Vydání

USA, Advances in Neural Information Processing Systems 32 (NIPS 2019), od s. 7666-7676, 11 s. 2019

Nakladatel

Neural Information Processing Systems Foundation, Inc.

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

Kód RIV

RIV/00216224:14330/19:00113727

Organizační jednotka

Fakulta informatiky

ISBN

978-1-7281-1044-8

UT WoS

000534424307066

Klíčová slova anglicky

Parameterized Complexity

Štítky

Změněno: 16. 5. 2022 15:14, Mgr. Michal Petr

Anotace

V originále

Cascading portfolio scheduling is a static algorithm selection strategy which uses a sample of test instances to compute an optimal ordering (a cascading schedule) of a portfolio of available algorithms. The algorithms are then applied to each future instance according to this cascading schedule, until some algorithm in the schedule succeeds. Cascading algorithm scheduling has proven to be effective in several applications, including QBF solving and the generation of ImageNet classification models. It is known that the computation of an optimal cascading schedule in the offline phase is NP-hard. In this paper we study the parameterized complexity of this problem and establish its fixed-parameter tractability by utilizing structural properties of the success relation between algorithms and test instances. Our findings are significant as they reveal that in spite of the intractability of the problem in its general form, one can indeed exploit sparseness or density of the success relation to obtain non-trivial runtime guarantees for finding an optimal cascading schedule.