D 2019

The Power of Cut-Based Parameters for Computing Edge Disjoint Paths

GANIAN, Robert a Sebastian ORDYNIAK

Základní údaje

Originální název

The Power of Cut-Based Parameters for Computing Edge Disjoint Paths

Autoři

GANIAN, Robert (203 Česká republika, garant, domácí) a Sebastian ORDYNIAK (276 Německo)

Vydání

USA, WG 2019: Graph-Theoretic Concepts in Computer Science, od s. 190-204, 15 s. 2019

Nakladatel

Springer

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

Impakt faktor

Impact factor: 0.402 v roce 2005

Kód RIV

RIV/00216224:14330/19:00113728

Organizační jednotka

Fakulta informatiky

ISBN

978-3-030-30785-1

ISSN

UT WoS

000557920500015

Klíčová slova anglicky

Parameterized Complexity

Štítky

Změněno: 16. 5. 2022 14:32, Mgr. Michal Petr

Anotace

V originále

This paper revisits the classical Edge Disjoint Paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our aim is to identify structural properties (parameters) of graphs which allow the efficient solution of EDP without restricting the placement of terminals in P in any way. In this setting, EDP is known to remain NP-hard even on extremely restricted graph classes, such as graphs with a vertex cover of size 3. We present three results which use edge-separator based parameters to chart new islands of tractability in the complexity landscape of EDP. Our first and main result utilizes the fairly recent structural parameter treecut width (a parameter with fundamental ties to graph immersions and graph cuts): we obtain a polynomial-time algorithm for EDP on every graph class of bounded treecut width. Our second result shows that EDP parameterized by treecut width is unlikely to be fixed-parameter tractable. Our final, third result is a polynomial kernel for EDP parameterized by the size of a minimum feedback edge set in the graph.