2019
The Power of Cut-Based Parameters for Computing Edge Disjoint Paths
GANIAN, Robert a Sebastian ORDYNIAKZákladní údaje
Originální název
The Power of Cut-Based Parameters for Computing Edge Disjoint Paths
Autoři
GANIAN, Robert (203 Česká republika, garant, domácí) a Sebastian ORDYNIAK (276 Německo)
Vydání
USA, WG 2019: Graph-Theoretic Concepts in Computer Science, od s. 190-204, 15 s. 2019
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/19:00113728
Organizační jednotka
Fakulta informatiky
ISBN
978-3-030-30785-1
ISSN
UT WoS
000557920500015
Klíčová slova anglicky
Parameterized Complexity
Změněno: 16. 5. 2022 14:32, Mgr. Michal Petr
Anotace
V originále
This paper revisits the classical Edge Disjoint Paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our aim is to identify structural properties (parameters) of graphs which allow the efficient solution of EDP without restricting the placement of terminals in P in any way. In this setting, EDP is known to remain NP-hard even on extremely restricted graph classes, such as graphs with a vertex cover of size 3. We present three results which use edge-separator based parameters to chart new islands of tractability in the complexity landscape of EDP. Our first and main result utilizes the fairly recent structural parameter treecut width (a parameter with fundamental ties to graph immersions and graph cuts): we obtain a polynomial-time algorithm for EDP on every graph class of bounded treecut width. Our second result shows that EDP parameterized by treecut width is unlikely to be fixed-parameter tractable. Our final, third result is a polynomial kernel for EDP parameterized by the size of a minimum feedback edge set in the graph.