2019
JASP: Graphical Statistical Software for Common Statistical Designs
LOVE, J.; R. SELKER; M. MARSMAN; T. JAMIL; D. DROPMANN et. al.Základní údaje
Originální název
JASP: Graphical Statistical Software for Common Statistical Designs
Autoři
LOVE, J.; R. SELKER; M. MARSMAN; T. JAMIL; D. DROPMANN; J. VERHAGEN; A. LY; Q.F. GRONAU; Martin ŠMÍRA; S. EPSKAMP; D. MATZKE; A. WILD; P. KNIGHT; J.N. ROUDER; R.D. MOREY a E.J. WAGENMAKERS
Vydání
JOURNAL OF STATISTICAL SOFTWARE, LOS ANGELES, JOURNAL STATISTICAL SOFTWARE, 2019, 1548-7660
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 13.642
Kód RIV
RIV/00216224:14230/19:00113750
Organizační jednotka
Fakulta sociálních studií
UT WoS
000457018600001
EID Scopus
2-s2.0-85061360981
Klíčová slova anglicky
JASP; statistical software; Bayesian inference; graphical user interface; basic statistics
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 4. 2020 12:24, Mgr. Blanka Farkašová
Anotace
V originále
This paper introduces JASP, a free graphical software package for basic statistical procedures such as t tests, ANOVAs, linear regression models, and analyses of contingency tables. JASP is open-source and differentiates itself from existing open-source solutions in two ways. First, JASP provides several innovations in user interface design; specifically, results are provided immediately as the user makes changes to options, output is attractive, minimalist, and designed around the principle of progressive disclosure, and analyses can be peer reviewed without requiring a "syntax". Second, JASP provides some of the recent developments in Bayesian hypothesis testing and Bayesian parameter estimation. The ease with which these relatively complex Bayesian techniques are available in JASP encourages their broader adoption and furthers a more inclusive statistical reporting practice. The JASP analyses are implemented in R and a series of R packages.