2018
Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints
KŘETÍNSKÝ, Jan, Guillermo PEREZ a Jean-Francois RASKINZákladní údaje
Originální název
Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints
Autoři
KŘETÍNSKÝ, Jan (203 Česká republika, garant, domácí), Guillermo PEREZ (188 Kostarika) a Jean-Francois RASKIN (56 Belgie)
Vydání
Dagstuhl, 29th International Conference on Concurrency Theory (CONCUR 2018), od s. 1-18, 18 s. 2018
Nakladatel
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/18:00108291
Organizační jednotka
Fakulta informatiky
ISBN
978-3-95977-087-3
ISSN
Klíčová slova anglicky
Learning; Mean-Payoff; Markov decision process; Omega-Regular Specification
Změněno: 27. 4. 2020 23:49, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
We formalize the problem of maximizing the mean-payoff value with high probability while satisfying a parity objective in a Markov decision process (MDP) with unknown probabilistic transition function and unknown reward function. Assuming the support of the unknown transition function and a lower bound on the minimal transition probability are known in advance, we show that in MDPs consisting of a single end component, two combinations of guarantees on the parity and mean-payoff objectives can be achieved depending on how much memory one is willing to use. (i) For all epsilon and gamma we can construct an online-learning finite-memory strategy that almost-surely satisfies the parity objective and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. (ii) Alternatively, for all epsilon and gamma there exists an online-learning infinite-memory strategy that satisfies the parity objective surely and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. We extend the above results to MDPs consisting of more than one end component in a natural way. Finally, we show that the aforementioned guarantees are tight, i.e. there are MDPs for which stronger combinations of the guarantees cannot be ensured.
Návaznosti
GA18-11193S, projekt VaV |
|