2019
Strategy Representation by Decision Trees with Linear Classifiers
ASHOK, Pranav, Tomáš BRÁZDIL, Krishnendu CHATTERJEE, Jan KŘETÍNSKÝ, Christoph LAMPERT et. al.Základní údaje
Originální název
Strategy Representation by Decision Trees with Linear Classifiers
Autoři
ASHOK, Pranav (356 Indie), Tomáš BRÁZDIL (203 Česká republika, domácí), Krishnendu CHATTERJEE (356 Indie), Jan KŘETÍNSKÝ (203 Česká republika, garant, domácí), Christoph LAMPERT a Viktor TOMAN (703 Slovensko, domácí)
Vydání
Cham, Quantitative Evaluation of Systems (QEST 2019), od s. 109-128, 20 s. 2019
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/19:00108295
Organizační jednotka
Fakulta informatiky
ISBN
978-3-030-30280-1
ISSN
UT WoS
000679281300007
Klíčová slova anglicky
Strategy Representation; Decision Trees; Linear Classifiers
Štítky
Změněno: 27. 4. 2020 23:17, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Graph games and Markov decision processes (MDPs) are standard models in reactive synthesis and verification of probabilistic systems with nondeterminism. The class of omega-regular winning conditions; e.g., safety, reachability, liveness, parity conditions; provides a robust and expressive specification formalism for properties that arise in analysis of reactive systems. The resolutions of nondeterminism in games and MDPs are represented as strategies, and we consider succinct representation of such strategies. The decision-tree data structure from machine learning retains the flavor of decisions of strategies and allows entropy-based minimization to obtain succinct trees. However, in contrast to traditional machine-learning problems where small errors are allowed, for winning strategies in graph games and MDPs no error is allowed, and the decision tree must represent the entire strategy. In this work we propose decision trees with linear classifiers for representation of strategies in graph games and MDPs. We have implemented strategy representation using this data structure and we present experimental results for problems on graph games and MDPs, which show that this new data structure presents a much more efficient strategy representation as compared to standard decision trees.
Návaznosti
GA18-11193S, projekt VaV |
|