J 2020

Mechanical Properties of cellulose fibers measured by Brillouin spectroscopy

ELSAYAD, Kareem, Georg URSTOGER, Caterina CZIBULA, Christian TEICHERT, Jaromír GUMULEC et. al.

Základní údaje

Originální název

Mechanical Properties of cellulose fibers measured by Brillouin spectroscopy

Autoři

ELSAYAD, Kareem (40 Rakousko), Georg URSTOGER (40 Rakousko), Caterina CZIBULA (40 Rakousko), Christian TEICHERT (40 Rakousko), Jaromír GUMULEC (203 Česká republika, domácí), Jan BALVAN (203 Česká republika, domácí), Michael POHLT (276 Německo) a Ulrich HIRN (40 Rakousko, garant)

Vydání

Cellulose, DORDRECHT, SPRINGER, 2020, 0969-0239

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

20502 Paper and wood

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 5.044

Kód RIV

RIV/00216224:14110/20:00115614

Organizační jednotka

Lékařská fakulta

UT WoS

000517696400001

Klíčová slova anglicky

Storage modulus; Young's modulus; Loss modulus; Brillouin spectroscopy; Viscoelasticity; Cellulose fiber

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 11. 5. 2020 13:58, Mgr. Tereza Miškechová

Anotace

V originále

We investigate the potential of Brillouin Light Scattering (BLS) Microspectroscopy for fast non-invasive all-optical assessment of the mechanical properties of viscose fibers and bleached softwood pulp. Using an optimized Brillouin spectrometer, we demonstrate fast spatial mapping of the complex longitudinal modulus over extended areas (> 100 mu m). Our results reveal that while the softwood pulp has a relatively uniform moduli, the viscous fibers have significant spatial heterogeneous in the moduli. Specifically, the viscose fibers exhibited a regular pattern of increasing and decreasing modulus normal to the fiber axis. The potential influence of a locally changing refractive index is investigated by holographic phase microscopy and ruled out. We discuss our results in light of the anisotropic mechanical properties of the fibers and are able to estimate the relative difference between the modulus along the fiber axis and that perpendicular to it. Results are presented alongside reference measurements of the quasi-static mechanical properties transverse to the fiber axes obtained using AFM-nanoindentation which reveal a similar trend, hinting at the potential usefulness of BLS for mechanical characterization applications. However, more detailed investigations are called for to uncover all the factors influencing the measured high-frequency BLS modulus and its significance in relation to physical properties of the fiber that may be of practical interest.