2020
Developing the Quality Model for Collaborative Open Data
GE, Mouzhi a Wlodzimierz LEWONIEWSKIZákladní údaje
Originální název
Developing the Quality Model for Collaborative Open Data
Autoři
GE, Mouzhi (156 Čína, garant, domácí) a Wlodzimierz LEWONIEWSKI (616 Polsko)
Vydání
176. vyd. Verona, Italy, Proceedings of the 24th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems - KES 2020, od s. 1883-1892, 10 s. 2020
Nakladatel
Elsevier Procedia Computer Science
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/20:00115620
Organizační jednotka
Fakulta informatiky
ISSN
Klíčová slova anglicky
Data Quality Quality Assessment Collaborative Open Data Wikipedia Quality Model
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 5. 2021 05:48, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Nowadays, the development of data sharing technologies allows to involve more people to collaboratively contribute knowledge on the Web. The shared knowledge is usually represented as Collaborative Open Data (COD), for example, Wikipedia is one of the well-known sources for COD. The Wikipedia articles can be written in different languages, updated in real time, and originated from a vast variety of editors. However, COD also bring different data quality problems such as data inconsistency and low data objectiveness due to the crowd-based and dynamic nature. These data quality problems such as biased information may lead to sentimental changes or social impacts. This paper therefore proposes a new measurement model to assess the quality of COD. In order to evaluate the proposed model, A preliminary experiment is conducted with a large scale of Wikipedia articles to validate the applicability and efficiency of this proposed quality model in the real-world scenario.
Návaznosti
EF16_013/0001802, projekt VaV |
|