2020
Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions
ZAPLETAL, Vojtěch, Arnošt MLÁDEK, Kateřina BENDOVÁ, Petr LOUŠA, Erik NOMILNER et. al.Základní údaje
Originální název
Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions
Autoři
ZAPLETAL, Vojtěch (203 Česká republika, domácí), Arnošt MLÁDEK (203 Česká republika, domácí), Kateřina BENDOVÁ (203 Česká republika, domácí), Petr LOUŠA (203 Česká republika, domácí), Erik NOMILNER (703 Slovensko, domácí), Zuzana JASEŇÁKOVÁ (703 Slovensko, domácí), Vojtěch KUBÁŇ (203 Česká republika, domácí), Markéta MAKOVICKÁ (203 Česká republika, domácí), Alice LANÍKOVÁ (203 Česká republika, domácí), Lukáš ŽÍDEK (203 Česká republika, domácí) a Jozef HRITZ (703 Slovensko, garant, domácí)
Vydání
Biophysical Journal, Bethesda, USA, Biophysical Society, 2020, 0006-3495
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10610 Biophysics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.033
Kód RIV
RIV/00216224:14740/20:00115635
Organizační jednotka
Středoevropský technologický institut
UT WoS
000524456100012
Klíčová slova anglicky
MOLECULAR-DYNAMICS; TYROSINE-HYDROXYLASE; NMR RELAXATION; RNA-POLYMERASE; DELTA-SUBUNIT; PREDICTION; PHOSPHORYLATION; RECOGNITION; ALIGNMENT; BIOLOGY
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 10. 2024 13:27, Ing. Jana Kuchtová
Anotace
V originále
Biomolecular force fields optimized for globular proteins fail to properly reproduce properties of intrinsically disordered proteins. In particular, parameters of the water model need to be modified to improve applicability of the force fields to both ordered and disordered proteins. Here, we compared performance of force fields recommended for intrinsically disordered proteins in molecular dynamics simulations of three proteins differing in the content of ordered and disordered regions (two proteins consisting of a well-structured domain and of a disordered region with and without a transient helical motif and one disordered protein containing a region of increased helical propensity). The obtained molecular dynamics trajectories were used to predict measurable parameters, including radii of gyration of the proteins and chemical shifts, residual dipolar couplings, paramagnetic relaxation enhancement, and NMR relaxation data of their individual residues. The predicted quantities were compared with experimental data obtained within this study or published previously. The results showed that the NMR relaxation parameters, rarely used for benchmarking, are particularly sensitive to the choice of force-field parameters, especially those defining the water model. Interestingly, the TIP3P water model, leading to an artificial structural collapse, also resulted in unrealistic relaxation properties. The TIP4P-D water model, combined with three biomolecular force-field parameters for the protein part, significantly improved reliability of the simulations. Additional analysis revealed only one particular force field capable of retaining the transient helical motif observed in NMR experiments. The benchmarking protocol used in our study, being more sensitive to imperfections than the commonly used tests, is well suited to evaluate the performance of newly developed force fields.
Návaznosti
LM2015085, projekt VaV |
| ||
LQ1601, projekt VaV |
| ||
LTAUSA18168, projekt VaV |
| ||
LTC17078, projekt VaV |
| ||
90042, velká výzkumná infrastruktura |
| ||
90070, velká výzkumná infrastruktura |
| ||
90127, velká výzkumná infrastruktura |
|