J 2020

Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water

OLSEN, G.L., O. SZEKELY, B. MATEOS, Pavel KADEŘÁVEK, F. FERRAGE et. al.

Základní údaje

Originální název

Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water

Autoři

OLSEN, G.L., O. SZEKELY, B. MATEOS, Pavel KADEŘÁVEK (203 Česká republika, garant, domácí), F. FERRAGE, R. KONRAT, R. PIERATTELLI, I.C. FELLI, G. BODENHAUSEN, D. KURZBACH a L. FRYDMAN

Vydání

Journal of biomolecular NMR, Dordrecht, Springer, 2020, 0925-2738

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10608 Biochemistry and molecular biology

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.835

Kód RIV

RIV/00216224:14740/20:00115687

Organizační jednotka

Středoevropský technologický institut

UT WoS

000516028000001

Klíčová slova anglicky

Hyperpolarization; Dissolution-dynamic nuclear polarization (D-DNP); Direct C-13 detection; 3D NMR; Non-uniform sampling; BEST-HNCO

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 30. 10. 2024 14:14, Ing. Martina Blahová

Anotace

V originále

Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and H-1-N-15 2D correlation experiments. Here we introduce 2D C-13-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform 'hyperpolarization-selective' signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).

Návaznosti

90127, velká výzkumná infrastruktura
Název: CIISB II