2020
Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water
OLSEN, G.L., O. SZEKELY, B. MATEOS, Pavel KADEŘÁVEK, F. FERRAGE et. al.Základní údaje
Originální název
Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water
Autoři
OLSEN, G.L., O. SZEKELY, B. MATEOS, Pavel KADEŘÁVEK (203 Česká republika, garant, domácí), F. FERRAGE, R. KONRAT, R. PIERATTELLI, I.C. FELLI, G. BODENHAUSEN, D. KURZBACH a L. FRYDMAN
Vydání
Journal of biomolecular NMR, Dordrecht, Springer, 2020, 0925-2738
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10608 Biochemistry and molecular biology
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.835
Kód RIV
RIV/00216224:14740/20:00115687
Organizační jednotka
Středoevropský technologický institut
UT WoS
000516028000001
Klíčová slova anglicky
Hyperpolarization; Dissolution-dynamic nuclear polarization (D-DNP); Direct C-13 detection; 3D NMR; Non-uniform sampling; BEST-HNCO
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 10. 2024 14:14, Ing. Martina Blahová
Anotace
V originále
Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and H-1-N-15 2D correlation experiments. Here we introduce 2D C-13-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform 'hyperpolarization-selective' signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).
Návaznosti
90127, velká výzkumná infrastruktura |
|