D 2020

Exploring Personalized University Ranking and Recommendation

ELAHI, Mehdi, Nabil EL IOINI, Anna LAMBRIX a Mouzhi GE

Základní údaje

Originální název

Exploring Personalized University Ranking and Recommendation

Autoři

ELAHI, Mehdi (578 Norsko), Nabil EL IOINI (380 Itálie), Anna LAMBRIX (380 Itálie) a Mouzhi GE (156 Čína, garant, domácí)

Vydání

Genoa, Italy, Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization - UMAP 2020, od s. 6-10, 5 s. 2020

Nakladatel

ACM

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Kód RIV

RIV/00216224:14330/20:00115805

Organizační jednotka

Fakulta informatiky

ISBN

978-1-4503-6711-0

Klíčová slova anglicky

collaborative filtering; personalized university ranking; preference elicitation; recommender systems; university recommendation

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 14. 5. 2021 06:39, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

Finding the right university to study is still a challenge for many people due to the large number of universities worldwide. Although there exist a number of global university rankings, they provide non# personalized rankings as one-size-fits-all solution. This becomes an issue since different people may have different preferences and considerations in mind, when choosing the university to study. This paper addresses this problem and presents a Recommender System to generate a personalized ranking list based on users particular preferences. The system is capable of eliciting users preferences, provided as ratings for universities, building predictive models on the preference data, and generating a personalized university ranking list that is tailored to the particular preferences and needs of the users. We performed two sets of experiments. First, we conducted an offline experiment using a dataset of user preferences, collected by the early version of our system. This allowed us to cross-validate and compare different recommender algorithms and choose the most accurate recommender algorithm that can better suit the particular problem at hand. We integrated the chosen algorithm in the final implementation of our system. As the follow-up, we performed a user study in order to analyze whether or not the final version of our system is usable from the perception of users. The results showed that the system has scored well above the benchmark and users assessed it as "good" in term of usability.