J 2020

Impact of Decreased Transmural Conduction Velocity on the Function of the Human Left Ventricle: A Simulation Study

VAVERKA, Jiri, Jiří MOUDR, Petr LOKAJ, Jiri BURSA, Michal PÁSEK et. al.

Základní údaje

Originální název

Impact of Decreased Transmural Conduction Velocity on the Function of the Human Left Ventricle: A Simulation Study

Autoři

VAVERKA, Jiri (203 Česká republika), Jiří MOUDR (203 Česká republika, domácí), Petr LOKAJ (203 Česká republika), Jiri BURSA (203 Česká republika) a Michal PÁSEK (203 Česká republika, garant, domácí)

Vydání

Biomed Research International, London, Hindawi Publishing Corporation, 2020, 2314-6133

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30105 Physiology

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.411

Kód RIV

RIV/00216224:14110/20:00116020

Organizační jednotka

Lékařská fakulta

UT WoS

000528680300003

Klíčová slova anglicky

HEART; GENE; MYOCARDIUM; MUTATIONS; CHILDREN; DURATION; MODEL

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 17. 7. 2020 08:16, Mgr. Tereza Miškechová

Anotace

V originále

This study investigates the impact of reduced transmural conduction velocity (TCV) on output parameters of the human heart. In a healthy heart, the TCV contributes to synchronization of the onset of contraction in individual layers of the left ventricle (LV). However, it is unclear whether the clinically observed decrease of TCV contributes significantly to a reduction of LV contractility. The applied three-dimensional finite element model of isovolumic contraction of the human LV incorporates transmural gradients in electromechanical delay and myocyte shortening velocity and evaluates the impact of TCV reduction on pressure rise (namely, (dP/dt)(max)) and on isovolumic contraction duration (IVCD) in a healthy LV. The model outputs are further exploited in the lumped "Windkessel" model of the human cardiovascular system (based on electrohydrodynamic analogy of respective differential equations) to simulate the impact of changes of (dP/dt)(max) and IVCD on chosen systemic parameters (ejection fraction, LV power, cardiac output, and blood pressure). The simulations have shown that a 50% decrease in TCV prolongs substantially the isovolumic contraction, decelerates slightly the LV pressure rise, increases the LV energy consumption, and reduces the LV power. These negative effects increase progressively with further reduction of TCV. In conclusion, these results suggest that the pumping efficacy of the human LV decreases with lower TCV due to a higher energy consumption and lower LV power. Although the changes induced by the clinically relevant reduction of TCV are not critical for a healthy heart, they may represent an important factor limiting the heart function under disease conditions.