2019
Statistical Coulomb interactions in multi-beam SEM
STOPKA, Jan a Pieter KRUITZákladní údaje
Originální název
Statistical Coulomb interactions in multi-beam SEM
Autoři
STOPKA, Jan a Pieter KRUIT
Vydání
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, SINGAPORE, WORLD SCIENTIFIC PUBL CO PTE LTD, 2019, 0217-751X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.486
UT WoS
000516718800022
Klíčová slova anglicky
Coulomb interactions; trajectory displacement; multi-beam SEM; electron optics; slice method
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 7. 2020 18:14, Mgr. Jan Stopka, Ph.D.
Anotace
V originále
Statistical Coulomb interactions in conventional scanning electron microscopy mostly affect the probe size via energy spread and virtual source broadening in the emitter vicinity. However, in a multi-beam probe forming system such as a multi-beam scanning electron microscopes (MBSEM), the trajectory displacement due to interactions in the whole column can give a contribution to the final probe size. For single-beam systems, this can be expressed using approximate formulae for the total trajectory displacement in a beam segment (Jansen's theory) or by integrating contributions of infinitesimally thin beam slices (the slice method). We build on Jansen's theory of statistical Coulomb interactions and develop formulae for the trajectory displacement in a multi-beam system. We also develop a more precise semi-analytical result using the slice method. We compare both approaches with a Monte Carlo simulation and show a good agreement with the results of the slice method. Finally, we discuss the implications of our results for the optical design of multi-beam SEM. In a multi-beam with probe size dominated by Coulomb interactions, an increase in the number of beamlets does not necessarily provide an increase of throughput, because the probe size is limited by the total current. Furthermore, we disprove the notion of "the fewer the crossovers - the less the Coulomb interactions" by showing the quadratic dependence of trajectory displacement on segment length.