2020
Molecular dynamics simulation of amine groups formation during plasma processing of polystyrene surfaces
MICHLÍČEK, Miroslav, Satoshi HAMAGUCHI a Lenka ZAJÍČKOVÁZákladní údaje
Originální název
Molecular dynamics simulation of amine groups formation during plasma processing of polystyrene surfaces
Autoři
MICHLÍČEK, Miroslav (203 Česká republika, domácí), Satoshi HAMAGUCHI (112 Bělorusko) a Lenka ZAJÍČKOVÁ (203 Česká republika, domácí)
Vydání
Plasma Sources Science and Technology, Bristol, IOP Publishing, 2020, 0963-0252
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
21001 Nano-materials
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.584
Kód RIV
RIV/00216224:14310/20:00114427
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000583117500001
Klíčová slova anglicky
amine functionalization; plasma treatment; plasma polymerization; molecular dynamics
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 6. 3. 2024 14:51, Mgr. Marie Šípková, DiS.
Anotace
V originále
Plasma treatment and plasma polymerization processes aiming to form amine groups on polystyrene surfaces were studied in-silico with molecular dynamics simulations. The simulations were compared with two experiments, (i) plasma treatment in N2/H2 bipolar pulsed discharge and (ii) plasma polymerization in cyclopropylamine/Ar radio frequency (RF) capacitively coupled discharge. To model favorable conditions for the incorporation of primary amine groups, we assumed the plasma treatment as the flux of NH2 radicals and energetic NH3 ions, and the plasma polymerization as the flux of cyclopropylamine molecules and energetic argon ions. It is shown in both the simulation and the experiment that the polystyrene treatment by the bipolar pulsed N2/H2 plasmas with an applied voltage of about ±1 kV formed a nitrogen-rich layer of a thickness of only a few nm. The simulations also showed that, as the NH3 incident energy increases, the ratio of primary amines to the total number of N atoms on the surface decreases. It is because the energetic ion bombardment brakes up N–H bonds of primary amines, which are mostly brought to the surface by NH2 radical adsorption. Our previous experimental work on the CPA plasma polymerization showed that increased RF power invested in the plasma leads to the deposition of films with lower nitrogen content. The MD simulations showed an increase of the nitrogen content with the Ar energy and a limited impact of the energetic bombardment on the retention of primary amines. Thus, the results highlighted the importance of the gas-phase processes on the nitrogen incorporation and primary amines retention in the plasma polymers. However, the higher energy flux towards the growing film clearly decreases amount of hydrogen and increases the polymer cross-linking.
Návaznosti
GA18-12774S, projekt VaV |
| ||
LQ1601, projekt VaV |
|