J 2005

Locally consistent constraint satisfaction problems

DVORAK, Z; Daniel KRÁĽ a O PANGRAC

Základní údaje

Originální název

Locally consistent constraint satisfaction problems

Autoři

DVORAK, Z; Daniel KRÁĽ a O PANGRAC

Vydání

Theoretical Computer Science, AMSTERDAM, North Holland, 2005, 0304-3975

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 0.743

UT WoS

000233671500004

Klíčová slova anglicky

constraint satisfaction problems; Boolean predicates; CNF formulas; 2-SAT
Změněno: 6. 11. 2020 10:58, Mgr. Darina Boukalová

Anotace

V originále

An instance of a constraint satisfaction problem is l-consistent if any l constraints of it can be simultaneously satisfied. For a set pi of constraint types, p(l)(pi) denotes the largest ratio of constraints which can be satisfied in any l-consistent instance composed by constraints of types from pi. In the case of sets pi consisting of finitely many Boolean predicates, we express the limit p(infinity)(pi) : =lim(l) p(l)(pi) as the minimum of a certain functional on a convex set of polynomials. Our results yield a robust deterministic algorithm (for a fixed set pi) running in time linear in the size of the input and I/epsilon which finds either an inconsistent set of constraints (of size bounded by the function of F,) or a truth assignment which satisfies the fraction of at least p(infinity) (pi)-epsilon of the given constraints. We also compute the values of p(l) ({P}) for several specific predicates P. (c) 2005 Elsevier B.V. All rights reserved.