2020
Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)-Azobenzene Spectrum
SRŠEŇ, Štěpán, Jaroslav SITA, Petr SLAVÍČEK, Vít LADÁNYI, Dominik HEGER et. al.Základní údaje
Originální název
Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)-Azobenzene Spectrum
Autoři
SRŠEŇ, Štěpán, Jaroslav SITA, Petr SLAVÍČEK, Vít LADÁNYI (203 Česká republika, domácí) a Dominik HEGER (203 Česká republika, domácí)
Vydání
Journal of Chemical Theory and Computation, Washington DC, American Chemical Society, 2020, 1549-9618
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 6.006
Kód RIV
RIV/00216224:14310/20:00114554
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000580954000039
Klíčová slova anglicky
Absorption; Chemical structure; Nanoelectromechanical systems; Mathematical methods; Absorption spectroscopy
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 12. 2020 15:19, Mgr. Marie Šípková, DiS.
Anotace
V originále
We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a "good practice" for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV-vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the n pi* band and a pronounced decrease in intensity of the low-energy part of the pi pi* band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the pi pi* band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck-Condon principle.
Návaznosti
GA19-08239S, projekt VaV |
|