2021
Counting Maximal Satisfiable Subsets
BENDÍK, Jaroslav a Kuldeep S. MEELZákladní údaje
Originální název
Counting Maximal Satisfiable Subsets
Autoři
BENDÍK, Jaroslav (203 Česká republika, garant, domácí) a Kuldeep S. MEEL (356 Indie)
Vydání
Palo Alto, 35th AAAI Conference on Artificial Intelligence (AAAI-21), od s. 3651-3660, 10 s. 2021
Nakladatel
AAAI
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/21:00120855
Organizační jednotka
Fakulta informatiky
ISBN
978-1-57735-866-4
ISSN
UT WoS
000680423503085
Klíčová slova anglicky
Constraint Satisfaction; Satisfiability; Diagnosis and Abductive Reasoning
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 5. 2024 01:49, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Given an unsatisfiable set of constraints F, a maximal satisfiable subset (MSS) is a maximal subset of constraints C ⊆ F such that C is satisfiable. Over the past two decades, the steady improvement in runtime performance of algorithms for finding MSS has led to an increased adoption of MSS-based techniques in wide variety of domains. Motivated by the progress in finding an MSS, the past decade has witnessed a surge of interest in design of algorithmic techniques to enumerate all the MSSes, which has subsequently led to discovery of new applications utilizing enumeration of MSSes. The development of techniques for finding and enumeration of MSSes mirrors a similar phenomenon of finding and enumeration of SAT solutions in the early 2000s, which subsequently motivated design of algorithmic techniques for model counting. In a similar spirit, we undertake study to investigate the feasibility of MSS counting techniques. In particular, the focus point of our investigation is to answer whether one can design efficient MSS counting techniques that do not rely on explicit MSS enumeration. The primary contribution of this work is an affirmative answer to the above question. Our tool, CountMSS, uses a novel architecture of a wrapper W and a remainder R such that the desired MSS count can be expressed as |W| − |R|. CountMSS relies on the advances in projected model counting to efficiently compute |W| and |R|. Our empirical evaluation demonstrates that CountMSS is able to scale to instances clearly beyond the reach of enumeration-based techniques.