2021
Residuated Operators and Dedekind–MacNeille Completion
CHAJDA, Ivan, Helmut LÄNGER a Jan PASEKAZákladní údaje
Originální název
Residuated Operators and Dedekind–MacNeille Completion
Autoři
CHAJDA, Ivan (garant), Helmut LÄNGER a Jan PASEKA (203 Česká republika, domácí)
Vydání
Cham, Algebraic Perspectives on Substructural Logics, od s. 57-72, 16 s. TREN, volume 55, 2021
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Kapitola resp. kapitoly v odborné knize
Obor
10101 Pure mathematics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Kód RIV
RIV/00216224:14310/21:00118809
Organizační jednotka
Přírodovědecká fakulta
ISBN
978-3-030-52162-2
Klíčová slova anglicky
residuated lattices; Operators
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 4. 2022 09:07, Mgr. Marie Šípková, DiS.
Anotace
V originále
The concept of operator residuation for bounded posets with unary operation was introduced by the first two authors. It turns out that in some cases when these operators are transformed into lattice terms and the poset P is completed to its Dedekind–MacNeille completion DM(P) then the complete lattice DM(P) becomes a residuated lattice with respect to these transformed terms. It is shown that this holds in particular for Boolean posets and for relatively pseudocomplemented posets. A more complicated situation is with orthomodular and pseudo-orthomodular posets. We show which operators M (multiplication) and R (residuation) yield operator left-residuation in a pseudo-orthomodular poset P and if DM(P) is an orthomodular lattice then the transformed lattice terms circled dot and -> form a left residuation in DM(P). However, it is a problem to determine when DM(P) is an orthomodular lattice. We get some classes of pseudo-orthomodular posets for which their Dedekind–MacNeille completion is an orthomodular lattice and we introduce the so-called strongly D-continuous pseudo-orthomodular posets. Finally we prove that, for a pseudo-orthomodular poset P, the Dedekind–MacNeille completion DM(P) is an orthomodular lattice if and only if P is strongly D-continuous.
Návaznosti
GA18-06915S, projekt VaV |
|