J 2021

The cichlid-Cichlidogyrusnetwork: a blueprint for a model system of parasite evolution

CRUZ-LAUFER, Armando J., Tom ARTOIS, Karen SMEETS, Antoine PARISELLE, Maarten Pieterjan VANHOVE et. al.

Základní údaje

Originální název

The cichlid-Cichlidogyrusnetwork: a blueprint for a model system of parasite evolution

Autoři

CRUZ-LAUFER, Armando J. (garant), Tom ARTOIS, Karen SMEETS, Antoine PARISELLE a Maarten Pieterjan VANHOVE (56 Belgie, domácí)

Vydání

Hydrobiologia, Dordrecht, Springer, 2021, 0018-8158

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10617 Marine biology, freshwater biology, limnology

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.822

Kód RIV

RIV/00216224:14310/21:00120930

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000578453900001

Klíčová slova anglicky

Cichlid parasites; Dactylogyridae; Monogenea; Host-parasite network; Taxonomic bias; Data reporting

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 22. 11. 2021 16:11, Mgr. Marie Šípková, DiS.

Anotace

V originále

Species interactions are a key aspect of evolutionary biology. Parasites, specifically, are drivers of the evolution of species communities and impact biosecurity and public health. However, when using interaction networks for evolutionary studies, interdependencies between distantly related species in these networks are shaped by ancient and complex processes. We propose using recent interacting host-parasite radiations, e.g. African cichlid fishes and cichlid gill parasites belonging toCichlidogyrus(Dactylogyridae, Monogenea), as macroevolutionary model of species interactions. The cichlid-Cichlidogyrusnetwork encompasses 138 parasite species and 416 interactions identified through morphological characteristics and genetic markers in 160 publications. We discuss the steps required to develop this model system based on data resolution, sampling bias, and reporting quality. In addition, we propose the following steps to guide efforts for a macroevolutionary model system for species interactions: first, evaluating and expanding model system outcome measures to increase data resolution; second, closing knowledge gaps to address underreporting and sampling bias arising from limited human and financial resources. Identifying phylogenetic and geographic targets, creating systematic overviews, enhancing scientific collaborations, and avoiding data loss through awareness of predatory journal publications can accelerate this process; and third, standardising data reporting to increase reporting quality and to facilitate data accessibility.