2021
The cichlid-Cichlidogyrusnetwork: a blueprint for a model system of parasite evolution
CRUZ-LAUFER, Armando J., Tom ARTOIS, Karen SMEETS, Antoine PARISELLE, Maarten Pieterjan VANHOVE et. al.Základní údaje
Originální název
The cichlid-Cichlidogyrusnetwork: a blueprint for a model system of parasite evolution
Autoři
CRUZ-LAUFER, Armando J. (garant), Tom ARTOIS, Karen SMEETS, Antoine PARISELLE a Maarten Pieterjan VANHOVE (56 Belgie, domácí)
Vydání
Hydrobiologia, Dordrecht, Springer, 2021, 0018-8158
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10617 Marine biology, freshwater biology, limnology
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.822
Kód RIV
RIV/00216224:14310/21:00120930
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000578453900001
Klíčová slova anglicky
Cichlid parasites; Dactylogyridae; Monogenea; Host-parasite network; Taxonomic bias; Data reporting
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 22. 11. 2021 16:11, Mgr. Marie Šípková, DiS.
Anotace
V originále
Species interactions are a key aspect of evolutionary biology. Parasites, specifically, are drivers of the evolution of species communities and impact biosecurity and public health. However, when using interaction networks for evolutionary studies, interdependencies between distantly related species in these networks are shaped by ancient and complex processes. We propose using recent interacting host-parasite radiations, e.g. African cichlid fishes and cichlid gill parasites belonging toCichlidogyrus(Dactylogyridae, Monogenea), as macroevolutionary model of species interactions. The cichlid-Cichlidogyrusnetwork encompasses 138 parasite species and 416 interactions identified through morphological characteristics and genetic markers in 160 publications. We discuss the steps required to develop this model system based on data resolution, sampling bias, and reporting quality. In addition, we propose the following steps to guide efforts for a macroevolutionary model system for species interactions: first, evaluating and expanding model system outcome measures to increase data resolution; second, closing knowledge gaps to address underreporting and sampling bias arising from limited human and financial resources. Identifying phylogenetic and geographic targets, creating systematic overviews, enhancing scientific collaborations, and avoiding data loss through awareness of predatory journal publications can accelerate this process; and third, standardising data reporting to increase reporting quality and to facilitate data accessibility.