J 2020

Rapid Eye Movement Sleep Sawtooth Waves Are Associated with Widespread Cortical Activations

FRAUSCHER, Birgit, Nicolas VON ELLENRIEDER, Irena DOLEŽALOVÁ, Sarah BOUHADOUN, Jean GOTMAN et. al.

Základní údaje

Originální název

Rapid Eye Movement Sleep Sawtooth Waves Are Associated with Widespread Cortical Activations

Autoři

FRAUSCHER, Birgit (124 Kanada), Nicolas VON ELLENRIEDER (124 Kanada), Irena DOLEŽALOVÁ (203 Česká republika, domácí), Sarah BOUHADOUN (124 Kanada), Jean GOTMAN (124 Kanada) a Laure PETER-DEREX (124 Kanada, garant)

Vydání

JOURNAL OF NEUROSCIENCE, WASHINGTON, SOC NEUROSCIENCE, 2020, 0270-6474

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30103 Neurosciences

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 6.167

Kód RIV

RIV/00216224:14110/20:00117696

Organizační jednotka

Lékařská fakulta

UT WoS

000590386800008

Klíčová slova anglicky

gamma; polysomnography; REM; signal analysis; sleep; stereo-EEG

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 12. 1. 2021 10:47, Mgr. Tereza Miškechová

Anotace

V originále

Sawtooth waves (STW) are bursts of frontocentral slow oscillations recorded in the scalp electroencephalogram (EEG) during rapid eye movement (REM) sleep. Little is known about their cortical generators and functional significance. Stereo-EEG per-formed for presurgical epilepsy evaluation offers the unique possibility to study neurophysiology in situ in the human brain. We investigated intracranial correlates of scalp-detected STW in 26 patients (14 women) undergoing combined stereo-EEG/ polysomnography. We visually marked STW segments in scalp EEG and selected stereo-EEG channels exhibiting normal activity for intracranial analyses. Channels were grouped in 30 brain regions. The spectral power in each channel and frequency band was computed during STW and non-STW control segments. Ripples (80-250 Hz) were automatically detected during STW and control segments. The spectral power in the different frequency bands and the ripple rates were then compared between STW and control segments in each brain region. An increase in 2-4 Hz power during STW segments was found in all brain regions, except the occipital lobe, with large effect sizes in the parietotemporal junction, the lateral and orbital frontal cortex, the anterior insula, and mesiotemporal structures. A widespread increase in high-frequency activity, including ripples, was observed concomitantly, involving the sensorimotor cortex, associative areas, and limbic structures. This distribution showed a high spatiotemporal heterogeneity. Our results suggest that STW are associated with widely distributed, but locally regulated REM sleep slow oscillations. By driving fast activities, STW may orchestrate synchronized reactivations of multifocal activities, allowing tagging of complex representations necessary for REM sleep-dependent memory consolidation.