2020
Spatio-Temporal Visualization Method for Urban Waterlogging Warning Based on Dynamic Grading
ZHOU, Jingyi, Jie SHEN, Kaiyue ZANG, Xiao SHI, Yixian DU et. al.Základní údaje
Originální název
Spatio-Temporal Visualization Method for Urban Waterlogging Warning Based on Dynamic Grading
Autoři
ZHOU, Jingyi, Jie SHEN, Kaiyue ZANG, Xiao SHI, Yixian DU a Petr ŠILHÁK (203 Česká republika, domácí)
Vydání
ISPRS International Journal of Geo-Information, Basel, MDPI, 2020, 2220-9964
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10508 Physical geography
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.899
Kód RIV
RIV/00216224:14310/20:00117941
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000565184000001
Klíčová slova anglicky
spatio-temporal visualization; urban waterlogging; disaster warning; visual granularity; dynamic grading
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 21. 1. 2021 14:14, Mgr. Marie Šípková, DiS.
Anotace
V originále
With the acceleration of the urbanization process, the problems caused by extreme weather such as heavy rainstorm events have become more and more serious. During such events, the road and its auxiliary facilities may be damaged in the process of the rainstorm and waterlogging, resulting in the decline of its traffic capacity. Rainfall is a continuous process in a space-time dimension, and as rainfall data are obtained through discrete monitoring stations, the acquired rainfall data have discrete characteristics of time interval and space. In order to facilitate users in understanding the impact of urban waterlogging on traffic, the visualization of waterlogging information needs to be displayed under different spatial and temporal granularity. Therefore, the appropriateness of the visualization granularity directly affects the user's cognition of the road waterlogging map. To solve this problem, this paper established a spatial granularity and temporal granularity computing quantitative model for spatio-temporal visualization of road waterlogging and the evaluation method of the model was based on the cognition experiment. The minimum visualization unit of the road section is 50 m and we proposed a 5-level depth grading method and two color schemes for road waterlogging visualization based on the user's cognition. To verify the feasibility of the method, we developed a prototype system and implemented a dynamic spatio-temporal visualization of the waterlogging process in the main urban area of Nanjing, China. The user cognition experiment showed that most participants thought that the segmentation of road was helpful to the local visual expression of waterlogging, and the color schemes of waterlogging depth were also helpful to display the road waterlogging information more effectively.