2020
Theoretical and computational framework for the analysis of the relaxation properties of arbitrary spin systems. Application to high-resolution relaxometry
BOLIK-COULON, N., Pavel KADEŘÁVEK, P. PELUPESSY, J.N. DUMEZ, F. FERRAGE et. al.Základní údaje
Originální název
Theoretical and computational framework for the analysis of the relaxation properties of arbitrary spin systems. Application to high-resolution relaxometry
Autoři
BOLIK-COULON, N., Pavel KADEŘÁVEK (203 Česká republika, garant, domácí), P. PELUPESSY, J.N. DUMEZ, F. FERRAGE a S.F. COUSIN
Vydání
Journal of Magnetic Resonance, San Diego, Academic Press Inc. Elsevier Science, 2020, 1090-7807
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10608 Biochemistry and molecular biology
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.229
Kód RIV
RIV/00216224:14740/20:00118364
Organizační jednotka
Středoevropský technologický institut
UT WoS
000524465000008
Klíčová slova anglicky
Nuclear spin relaxation; Analytical relaxation computation; High-resolution relaxometry
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 10. 2024 14:14, Ing. Martina Blahová
Anotace
V originále
A wide variety of nuclear magnetic resonance experiments rely on the prediction and analysis of relaxation processes. Recently, innovative approaches have been introduced where the sample travels through a broad range of magnetic fields in the course of the experiment, such as dissolution dynamic nuclear polarization or high-resolution relaxometry. Understanding the relaxation properties of nuclear spin systems over orders of magnitude of magnetic fields is essential to rationalize the results of these experiments. For example, during a high-resolution relaxometry experiment, the absence of control of nuclear spin relaxation pathways during the sample transfers and relaxation delays leads to systematic deviations of polarization decays from an ideal mono-exponential decay with the pure longitudinal relaxation rate. These deviations have to be taken into account to describe quantitatively the dynamics of the system. Here, we present computational tools to (1) calculate analytical expressions of relaxation rates for a broad variety of spin systems and (2) use these analytical expressions to correct the deviations arising in high-resolution relaxometry experiments. These tools lead to a better understanding of nuclear spin relaxation, which is required to improve the sensitivity of many pulse sequences, and to better characterize motions in macromolecules. (C) 2020 Published by Elsevier Inc.
Návaznosti
90127, velká výzkumná infrastruktura |
|