J 2020

Theoretical and computational framework for the analysis of the relaxation properties of arbitrary spin systems. Application to high-resolution relaxometry

BOLIK-COULON, N., Pavel KADEŘÁVEK, P. PELUPESSY, J.N. DUMEZ, F. FERRAGE et. al.

Základní údaje

Originální název

Theoretical and computational framework for the analysis of the relaxation properties of arbitrary spin systems. Application to high-resolution relaxometry

Autoři

BOLIK-COULON, N., Pavel KADEŘÁVEK (203 Česká republika, garant, domácí), P. PELUPESSY, J.N. DUMEZ, F. FERRAGE a S.F. COUSIN

Vydání

Journal of Magnetic Resonance, San Diego, Academic Press Inc. Elsevier Science, 2020, 1090-7807

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10608 Biochemistry and molecular biology

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.229

Kód RIV

RIV/00216224:14740/20:00118364

Organizační jednotka

Středoevropský technologický institut

UT WoS

000524465000008

Klíčová slova anglicky

Nuclear spin relaxation; Analytical relaxation computation; High-resolution relaxometry

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 30. 10. 2024 14:14, Ing. Martina Blahová

Anotace

V originále

A wide variety of nuclear magnetic resonance experiments rely on the prediction and analysis of relaxation processes. Recently, innovative approaches have been introduced where the sample travels through a broad range of magnetic fields in the course of the experiment, such as dissolution dynamic nuclear polarization or high-resolution relaxometry. Understanding the relaxation properties of nuclear spin systems over orders of magnitude of magnetic fields is essential to rationalize the results of these experiments. For example, during a high-resolution relaxometry experiment, the absence of control of nuclear spin relaxation pathways during the sample transfers and relaxation delays leads to systematic deviations of polarization decays from an ideal mono-exponential decay with the pure longitudinal relaxation rate. These deviations have to be taken into account to describe quantitatively the dynamics of the system. Here, we present computational tools to (1) calculate analytical expressions of relaxation rates for a broad variety of spin systems and (2) use these analytical expressions to correct the deviations arising in high-resolution relaxometry experiments. These tools lead to a better understanding of nuclear spin relaxation, which is required to improve the sensitivity of many pulse sequences, and to better characterize motions in macromolecules. (C) 2020 Published by Elsevier Inc.

Návaznosti

90127, velká výzkumná infrastruktura
Název: CIISB II