MURPHY-ARMANDO, Felipe, Moritz BREHM, Petr STEINDL, Mark LUSK, T. FROMHERZ, Karlheinz SCHWARZ a Peter BLAHA. Light emission from direct band gap germanium containing split-interstitial defects. Physical Review B. The American Physical Society, 2021, roč. 103, č. 8, s. "085310-1"-"085310-11", 11 s. ISSN 2469-9950. Dostupné z: https://dx.doi.org/10.1103/PhysRevB.103.085310.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Light emission from direct band gap germanium containing split-interstitial defects
Autoři MURPHY-ARMANDO, Felipe, Moritz BREHM, Petr STEINDL (203 Česká republika, domácí), Mark LUSK, T. FROMHERZ, Karlheinz SCHWARZ a Peter BLAHA.
Vydání Physical Review B, The American Physical Society, 2021, 2469-9950.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10302 Condensed matter physics
Stát vydavatele Spojené státy
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 3.908
Kód RIV RIV/00216224:14310/21:00121241
Organizační jednotka Přírodovědecká fakulta
Doi http://dx.doi.org/10.1103/PhysRevB.103.085310
UT WoS 000621592900005
Klíčová slova anglicky Spontaneous emission; k dot p method; Electronic structure; first-principles calculations; interstitials
Štítky rivok
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Mgr. Marie Šípková, DiS., učo 437722. Změněno: 22. 3. 2021 16:36.
Anotace
The lack of useful and cost-efficient group-IV direct band gap light emitters still presents the main bottle-neck for complementary metal-oxide semiconductor-compatible short-distance data transmission, single-photon emission, and sensing based on silicon photonics. Germanium, a group-IV element like Si, is already widely used in silicon fabs. While the energy band gap of Ge is intrinsically indirect, we predict that the insertion of Ge-Ge split-[110] interstitials into crystalline Ge can open up a direct band gap transmission path. Here, we calculate from first principles the band structure and optical emission properties of Ge, Sb, and Sn split-[110] interstitials in bulk and low-dimensional Ge at different doping concentrations. Two types of electronic states provide the light-emission enhancement below the direct band gap of Ge: a hybridized L-Gamma state at the Brillouin zone center and a conduction band of Delta band character that couples to a raised valence band along the Gamma-X direction. Majority carrier introduced to the system through doping can enhance light emission by saturation of nonradiative paths. Ge-Sn split interstitials in Ge shift the top of the valence band towards the Gamma-X direction and increase the Gamma character of the L-Gamma state, which results in a shift to longer emission wavelengths. Key spectral regions for datacom and sensing applications can be covered by applying quantum confinement in defect-enhanced Ge quantum dots for an emission wavelength shift from the midinfrared to the telecom regime.
VytisknoutZobrazeno: 1. 8. 2024 08:25