2020
			
	    
	
	
    Stereo-electroencephalography (SEEG) reference based on low-variance signals
UHER, Daniel; Petr KLIMES; Jan CIMBALNIK; Robert ROMAN; Martin PAIL et. al.Základní údaje
Originální název
Stereo-electroencephalography (SEEG) reference based on low-variance signals
	Autoři
UHER, Daniel (203 Česká republika); Petr KLIMES (203 Česká republika, garant); Jan CIMBALNIK (203 Česká republika); Robert ROMAN (203 Česká republika, domácí); Martin PAIL (203 Česká republika, domácí); Milan BRÁZDIL (203 Česká republika, domácí) a Pavel JURÁK (203 Česká republika)
			Vydání
 NEW YORK, 42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, od s. 204-207, 4 s. 2020
			Nakladatel
IEEE
		Další údaje
Jazyk
angličtina
		Typ výsledku
Stať ve sborníku
		Obor
30210 Clinical neurology
		Stát vydavatele
Spojené státy
		Utajení
není předmětem státního či obchodního tajemství
		Forma vydání
elektronická verze "online"
		Odkazy
Kód RIV
RIV/00216224:14110/20:00118416
		Organizační jednotka
Lékařská fakulta
			ISBN
978-1-7281-1990-8
		ISSN
UT WoS
000621592200050
		EID Scopus
2-s2.0-85091027430
		Klíčová slova anglicky
Stereo-electroencephalography; low-variance signals
		Štítky
Příznaky
Mezinárodní význam, Recenzováno
		
				
				Změněno: 12. 5. 2021 14:50, Mgr. Tereza Miškechová
				
		Anotace
V originále
For a correct assessment of stereo-electroencephalographic (SEEG) recordings, a proper signal electrical reference is necessary. Such a reference might be physical or virtual. Physical reference can be noisy and a proper virtual reference calculation is often time-consuming. This paper uses the variance of the SEEG signals to calculate the reference from relatively low noise signals to reduce the contamination by distant sources, while maintaining negligible computing time. Ten patients with SEEG recordings were used in this study. 20-second long recordings from each patient, sampled at 5000 Hz, were used to calculate variances of SEEG signals and a low-variance (LV) subset of signals was selected for each patient. Consequently, 4 different reference signals were calculated using: 1) an average signal from WM contacts only (AVG WM); 2) an average signal from LV contacts only (AVG LV); 3) independent component analysis (ICA) method from WM contacts only (ICA WM); and 4) ICA method from LV signals only (ICA LV). Also, the original testing reference, an average signal from all SEEG contacts (AVG) was utilized. Finally, bipolar signals and average signals from anatomical structures were calculated and used to evaluate reference signals. 91.7% of the WM SEEG contacts were found below the average variance. ICA LV showed the best and AVG WM the worst overall results. AVG LV had the most positive impact on minimizing the mutual correlations between separate brain structures and correcting the outliers. The average processing time for ICA methods was 66.72 seconds and 0.7870 seconds for AVG methods (100 000 samples, 125.7 +/- 20.4 SEEG signals). Utilizing the LV data subset improves the reference signal. WM references are difficult to obtain and seem to be more susceptible to errors caused by low number of WM contacts in the dataset. ICA LV can be considered as one of the best reference estimations, however the calculation is very demanding and time consuming. AVG LV shows good and stable results, while it is based on a straightforward methodology and outstandingly fast calculation.