2021
A Hybrid Data-driven Model for Intrusion Detection in VANET
BANGUI, Hind, Mouzhi GE a Barbora BÜHNOVÁZákladní údaje
Originální název
A Hybrid Data-driven Model for Intrusion Detection in VANET
Autoři
BANGUI, Hind (504 Maroko, domácí), Mouzhi GE (156 Čína, domácí) a Barbora BÜHNOVÁ (203 Česká republika, domácí)
Vydání
Warsaw, Poland, The 12th International Conference on Ambient Systems, Networks and Technologies (ANT 2021), od s. 516-523, 8 s. 2021
Nakladatel
Elsevier Science
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Polsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/21:00121268
Organizační jednotka
Fakulta informatiky
ISSN
UT WoS
000672800000064
Klíčová slova anglicky
VANET; Clustering; IDS; Coreset; Security ; Data Approximation
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 23. 5. 2022 14:27, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Nowadays, VANET (Vehicular Ad-hoc NETwork) has gained increasing attention from many researchers with its various applications, such as enhancing traffic safety by collecting and disseminating traffic event information. This increased interest in VANET has necessitated greater scrutiny of machine learning (ML) methods used for improving the security capabilities of intrusion detection systems (IDSs), such as the need to solve computationally intensive ML problems due to the increased vehicular data. Therefore, in this paper, we propose a hybrid ML model to enhance the performance of IDSs by dealing with the explosive growth in computing power and the need for detecting malicious incidents timely. The proposed approach mainly uses the advantages of Random Forest to detect known network intrusions. Besides, there is a post-detection phase to detect possible novel intruders by using the advantages of coresets and clustering algorithms. Our approach is evaluated over a very recent IDS dataset named CICIDS2017. The preliminary results show that the proposed hybrid model can increase the utility of IDSs.
Návaznosti
CZ.02.1.01/0.0/0.0/16_019/0000822, interní kód MU (Kód CEP: EF16_019/0000822) |
| ||
EF16_019/0000822, projekt VaV |
|