2021
On Training Knowledge Graph Embedding Models
MOHAMED, Sameh K, Vít NOVACEK a Emir MUNOZZákladní údaje
Originální název
On Training Knowledge Graph Embedding Models
Autoři
MOHAMED, Sameh K, Vít NOVACEK (203 Česká republika, garant, domácí) a Emir MUNOZ
Vydání
Information, Switzerland, MDPI, 2021, 2078-2489
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14330/21:00121336
Organizační jednotka
Fakulta informatiky
UT WoS
000643062300001
Klíčová slova anglicky
loss functions; knowledge graph embeddings; link prediction
Příznaky
Recenzováno
Změněno: 23. 5. 2022 14:41, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Knowledge graph embedding (KGE) models have become popular means for making discoveries in knowledge graphs (e.g., RDF graphs) in an efficient and scalable manner. The key to success of these models is their ability to learn low-rank vector representations for knowledge graph entities and relations. Despite the rapid development of KGE models, state-of-the-art approaches have mostly focused on new ways to represent embeddings interaction functions (i.e., scoring functions). In this paper, we argue that the choice of other training components such as the loss function, hyperparameters and negative sampling strategies can also have substantial impact on the model efficiency. This area has been rather neglected by previous works so far and our contribution is towards closing this gap by a thorough analysis of possible choices of training loss functions, hyperparameters and negative sampling techniques. We finally investigate the effects of specific choices on the scalability and accuracy of knowledge graph embedding models.