2021
DeepAlign, a 3D Alignment Method based on Regionalized Deep Learning for Cryo-EM
JIMÉNEZ-MORENO, Amaya, David STŘELÁK, Jiří FILIPOVIČ, José María CARAZO, Carlos Óscar S. SORZANO et. al.Základní údaje
Originální název
DeepAlign, a 3D Alignment Method based on Regionalized Deep Learning for Cryo-EM
Autoři
JIMÉNEZ-MORENO, Amaya (724 Španělsko), David STŘELÁK (203 Česká republika, domácí), Jiří FILIPOVIČ (203 Česká republika, garant, domácí), José María CARAZO a Carlos Óscar S. SORZANO
Vydání
Journal of Structural Biology, San Diego,USA, Academic Press, 2021, 1047-8477
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.234
Kód RIV
RIV/00216224:14610/21:00121351
Organizační jednotka
Ústav výpočetní techniky
UT WoS
000756475200010
Klíčová slova anglicky
3D alignment; 3D reconstruction; Cryo-EM; Deep learning; Machine learning
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 12. 4. 2022 16:50, Mgr. Alena Mokrá
Anotace
V originále
Cryo Electron Microscopy (Cryo-EM) is currently one of the main tools to reveal the structural information of biological specimens at high resolution. Despite the great development of the techniques involved to solve the biological structures with Cryo-EM in the last years, the reconstructed 3D maps can present lower resolution due to errors committed while processing the information acquired by the microscope. One of the main problems comes from the 3D alignment step, which is an error-prone part of the reconstruction workflow due to the very low signal-to-noise ratio (SNR) common in Cryo-EM imaging. In fact, as we will show in this work, it is not unusual to find a disagreement in the alignment parameters in approximately 20–40% of the processed images, when outputs of different alignment algorithms are compared. In this work, we present a novel method to align sets of single particle images in the 3D space, called DeepAlign. Our proposal is based on deep learning networks that have been successfully used in plenty of problems in image classification. Specifically, we propose to design several deep neural networks on a regionalized basis to classify the particle images in sub-regions and, then, make a refinement of the 3D alignment parameters only inside that sub-region. We show that this method results in accurately aligned images, improving the Fourier shell correlation (FSC) resolution obtained with other state-of-the-art methods while decreasing computational time.
Návaznosti
MUNI/A/1411/2019, interní kód MU |
| ||
MUNI/A/1549/2020, interní kód MU |
|