CHEN, Gang, Le WANG, Wei LI, Yang ZHAO, Shengmei ZHAO a Jozef GRUSKA. Multiple-pulse phase-matching quantum key distribution. Quantum Information Processing. 2020, roč. 19, č. 11, s. "416:1"-"416:16", 16 s. ISSN 1570-0755. Dostupné z: https://dx.doi.org/10.1007/s11128-020-02920-1.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Multiple-pulse phase-matching quantum key distribution
Autoři CHEN, Gang, Le WANG, Wei LI, Yang ZHAO, Shengmei ZHAO a Jozef GRUSKA (703 Slovensko, garant, domácí).
Vydání Quantum Information Processing, 2020, 1570-0755.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10201 Computer sciences, information science, bioinformatics
Stát vydavatele Spojené státy
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 2.349
Kód RIV RIV/00216224:14330/20:00118536
Organizační jednotka Fakulta informatiky
Doi http://dx.doi.org/10.1007/s11128-020-02920-1
UT WoS 000594163700008
Klíčová slova anglicky Quantum key distribution; Phase modulation; Round-robin differential phase shift; Secret key rate
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnil: RNDr. Pavel Šmerk, Ph.D., učo 3880. Změněno: 5. 11. 2021 14:56.
Anotace
We propose a multiple-pulse phase-matching quantum key distribution protocol to exceed the linear key rate bound and to achieve higher error tolerance. In our protocol, Alice and Bob generate at first their own pulse train (each train should contain L pulses) as well as random bit sequences and also encode each pulse of their train with a randomized phase and a modulation phase. As the next step, both encoded trains are simultaneously sent to Charlie, who performs an interference detection and may be also an eavesdropper. After a successful detection is announced by Charlie, Alice and Bob open the randomized phase of each pulse and keep only communications when the summation of the difference randomized phases at two success detections' time stamps for Alice and Bob is equal to 0 or pi. Thereafter, Alice and Bob compute the sifted key with the time stamps. The above procedure is repeated until both Alice and Bob achieve sufficiently long sifted keys. We can also show that the secret key rate of the proposed QKD protocol can beat the rate-loss limit of so far known QKD protocols when the transmission distance is greater than 150-175 km. Moreover, the proposed protocol has a higher error tolerance, approximately 22.5%, when the transmission distance is 50 km and L=128. The secret key rate and the transmission distance of our protocol are superior to that of the round-robin differential phase shift quantum key distribution protocol Sasaki et al. (Nature 509:475-480, 2014) and the measurement-device-independent quantum key distribution protocol Lo et al. (Phys Rev Lett 108:130503, 2012), and the secret key rate performance is better in both cases than that of phase-matching quantum key distribution when bit train length is greater than 16.
VytisknoutZobrazeno: 30. 4. 2024 20:56