J 2022

3D Bioprinted Cardiac Tissues and Devices for Tissue Maturation

SEDLÁKOVÁ, Veronika, Christopher MCTIERNAN, David CORTES, Erik J. SUURONEN, Emilio I. ALARCON et. al.

Základní údaje

Originální název

3D Bioprinted Cardiac Tissues and Devices for Tissue Maturation

Autoři

SEDLÁKOVÁ, Veronika (203 Česká republika, domácí), Christopher MCTIERNAN (124 Kanada), David CORTES, Erik J. SUURONEN (124 Kanada) a Emilio I. ALARCON (124 Kanada, garant)

Vydání

Cells, tissues, organs, Basel, Karger, 2022, 1422-6405

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10601 Cell biology

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.700

Kód RIV

RIV/00216224:14110/22:00124933

Organizační jednotka

Lékařská fakulta

UT WoS

000627432300001

Klíčová slova anglicky

3D printing; Cardiac tissue; Valve; Maturation; Bioreactor

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 16. 1. 2023 14:32, Mgr. Tereza Miškechová

Anotace

V originále

Cardiovascular diseases are the leading cause of mortality worldwide. Given the limited endogenous regenerative capabilities of cardiac tissue, patient-specific anatomy, challenges in treatment options, and shortage of donor tissues for transplantation, there is an urgent need for novel approaches in cardiac tissue repair. 3D bioprinting is a technology based on additive manufacturing which allows for the design of precisely controlled and spatially organized structures, which could possibly lead to solutions in cardiac tissue repair. In this review, we describe the basic morphological and physiological specifics of the heart and cardiac tissues and introduce the readers to the fundamental principles underlying 3D printing technology and some of the materials/approaches which have been used to date for cardiac repair. By summarizing recent progress in 3D printing of cardiac tissue and valves with respect to the key features of cardiovascular tissue (such as contractility, conductivity, and vascularization), we highlight how 3D printing can facilitate surgical planning and provide custom-fit implants and properties that match those from the native heart. Finally, we also discuss the suitability of this technology in the design and fabrication of custom-made devices intended for the maturation of the cardiac tissue, a process that has been shown to increase the viability of implants. Altogether this review shows that 3D printing and bioprinting are versatile and highly modulative technologies with wide applications in cardiac regeneration and beyond.