J 2021

Content-Based Management of Human Motion Data: Survey and Challenges

SEDMIDUBSKÝ, Jan, Petr ELIÁŠ, Petra BUDÍKOVÁ a Pavel ZEZULA

Základní údaje

Originální název

Content-Based Management of Human Motion Data: Survey and Challenges

Autoři

SEDMIDUBSKÝ, Jan (203 Česká republika, garant, domácí), Petr ELIÁŠ (203 Česká republika, domácí), Petra BUDÍKOVÁ (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, domácí)

Vydání

IEEE Access, IEEE Xplore Digital Library, 2021, 2169-3536

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10200 1.2 Computer and information sciences

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.476

Kód RIV

RIV/00216224:14330/21:00119002

Organizační jednotka

Fakulta informatiky

UT WoS

000645842300001

Klíčová slova anglicky

Action detection; content-based processing; deep features; metric learning; motion capture data; skeleton sequences; similarity; sub-sequence search

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 20. 4. 2022 10:54, doc. RNDr. Jan Sedmidubský, Ph.D.

Anotace

V originále

Digitization of human motion using skeleton representations offers exciting possibilities for a large number of applications but, at the same time, requires innovative techniques for their effective and efficient processing. Content-based processing of skeleton data has developed rapidly in recent years, focusing mainly on specialized prototypes with limited consideration of generic data management possibilities. In this survey article, we synthesize and categorize the existing approaches and outline future research challenges brought by the increasing availability of human motion data. In particular, we first discuss the problems of suitable representation and segmentation of continuous skeleton data obtained from various sources. Then, we concentrate on comparison models for assessing the similarity of time-restricted pieces of motions, as required by any content-based management operation. Next, we review the techniques for evaluating similarity queries over collections of motion sequences and filtering query-relevant parts from continuous motion streams. Finally, we summarize the usability of existing techniques in perspective application domains and discuss the new challenges related to current technological and infrastructural developments. We especially assess the existing techniques from the perspective of scalability and propose future research directions for dealing with large and diverse volumes of skeleton data.

Návaznosti

GA19-02033S, projekt VaV
Název: Vyhledávání, analytika a anotace datových toků lidských pohybů
Investor: Grantová agentura ČR, Searching, Mining, and Annotating Human Motion Streams