2021
Transformation preserving controllability for nonlinear optimal control problems with joint boundary conditions
ŠIMON HILSCHER, Roman a Vera Michel ZEIDANZákladní údaje
Originální název
Transformation preserving controllability for nonlinear optimal control problems with joint boundary conditions
Autoři
ŠIMON HILSCHER, Roman (203 Česká republika, garant, domácí) a Vera Michel ZEIDAN (840 Spojené státy)
Vydání
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2021, 1292-8119
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Francie
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.708
Kód RIV
RIV/00216224:14310/21:00119059
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000675417500004
Klíčová slova anglicky
Optimal control problem; joint (coupled) endpoints; separated endpoints; controllability; strong Pontryagin principle; coercivity; sensitivity analysis; free time problem
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 8. 2021 08:46, Mgr. Marie Šípková, DiS.
Anotace
V originále
In this paper we develop a new approach for optimal control problems with general jointly varying state endpoints (also called coupled endpoints). We present a new transformation of a nonlinear optimal control problem with jointly varying state endpoints and pointwise equality control constraints into an equivalent optimal control problem of the same type but with separately varying state endpoints in double dimension. Our new transformation preserves among other properties the controllability (normality) of the considered optimal control problems. At the same time it is well suited even for the calculus of variations problems with joint state endpoints, as well as for optimal control problems with free initial and/or final time. This work is motivated by the results on the second order Sturm–Liouville eigenvalue problems with joint endpoints by Dwyer and Zettl (1994) and by the sensitivity result for nonlinear optimal control problems with separated state endpoints by the authors (2018).
Návaznosti
GA19-01246S, projekt VaV |
|