2021
Computing Bottom SCCs Symbolically Using Transition Guided Reduction
BENEŠ, Nikola, Luboš BRIM, Samuel PASTVA a David ŠAFRÁNEKZákladní údaje
Originální název
Computing Bottom SCCs Symbolically Using Transition Guided Reduction
Autoři
BENEŠ, Nikola (203 Česká republika, domácí), Luboš BRIM (203 Česká republika, domácí), Samuel PASTVA (703 Slovensko, domácí) a David ŠAFRÁNEK (203 Česká republika, domácí)
Vydání
Neuveden, Computer Aided Verification - 33rd International Conference, CAV 2021, od s. 505-528, 24 s. 2021
Nakladatel
Springer Nature
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/21:00121980
Organizační jednotka
Fakulta informatiky
ISBN
978-3-030-81684-1
ISSN
UT WoS
000698732400024
Klíčová slova anglicky
Bottom SCC; Symbolic algorithm; Boolean network
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 11. 10. 2021 07:52, prof. RNDr. Luboš Brim, CSc.
Anotace
V originále
Detection of bottom strongly connected components (BSCC) in state-transition graphs is an important problem with many applications, such as detecting recurrent states in Markov chains or attractors in dynamical systems. However, these graphs’ size is often entirely out of reach for algorithms using explicit state-space exploration, necessitating alternative approaches such as the symbolic one. Symbolic methods for BSCC detection often show impressive performance, but can sometimes take a long time to converge in large graphs. In this paper, we provide a symbolic state-space reduction method for labelled transition systems, called interleaved transition guided reduction (ITGR), which aims to alleviate current problems of BSCC detection by efficiently identifying large portions of the non-BSCC states. We evaluate the suggested heuristic on an extensive collection of 125 real-world biologically motivated systems. We show that ITGR can easily handle all these models while being either the only method to finish, or providing at least an order-of-magnitude speedup over existing state-of-the-art methods. We then use a set of synthetic benchmarks to demonstrate that the technique also consistently scales to graphs with more than 2^1000 vertices, which was not possible using previous methods.
Návaznosti
MUNI/A/1108/2020, interní kód MU |
| ||
MUNI/A/1549/2020, interní kód MU |
|