2021
Substrate Anchoring and Flexibility Reduction in CYP153A(M.aq) Leads to Highly Improved Efficiency toward Octanoic Acid
RAPP, Lea R., Sérgio Manuel MARQUES, Erna ZUKIC, Benjamin ROWLINSON, Mahima SHARMA et. al.Základní údaje
Originální název
Substrate Anchoring and Flexibility Reduction in CYP153A(M.aq) Leads to Highly Improved Efficiency toward Octanoic Acid
Autoři
RAPP, Lea R. (276 Německo), Sérgio Manuel MARQUES (620 Portugalsko, domácí), Erna ZUKIC (826 Velká Británie a Severní Irsko), Benjamin ROWLINSON (826 Velká Británie a Severní Irsko), Mahima SHARMA (826 Velká Británie a Severní Irsko), Gideon GROGAN (826 Velká Británie a Severní Irsko), Jiří DAMBORSKÝ (203 Česká republika, garant, domácí) a Bernhard HAUER (276 Německo)
Vydání
ACS Catalysis, WASHINGTON, AMER CHEMICAL SOC, 2021, 2155-5435
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 13.700
Kód RIV
RIV/00216224:14310/21:00122271
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000626844200065
Klíčová slova anglicky
biocatalysis; enzyme engineering; molecular dynamics; computational chemistry; cytochrome P450
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 2. 2023 12:40, Mgr. Michaela Hylsová, Ph.D.
Anotace
V originále
Cytochrome P450 CYP153A(M.aq) from Marinobacter aquaeolei serves as a model enzyme for the terminal (omega-) hydroxylation of medium- to long-chain fatty acids. We have engineered this enzyme using different mutagenesis approaches based on structure-sequence-alignments within the 3DM database and crystal structures of CYP153A(M.aq) and a homologue CYP153A(P.sp). Applying these focused mutagenesis strategies and site-directed saturation mutagenesis, we created a variant that omega-hydroxylates octanoic acid. The M.aqRLT variant exhibited 151-fold improved catalytic efficiency and showed strongly improved substrate binding (25-fold reduced K-m compared to the wild type). We then used molecular dynamics simulations to gain deeper insights into the dynamics of the protein. We found the tunnel modifications and the two loop regions showing greatly reduced flexibility in the engineered variant were the main features responsible for stabilizing the enzyme-substrate complex and enhancing the catalytic efficiency. Additionally, we showed that a previously known fatty acid anchor (Q129R) interacts significantly with the ligand to hold it in the reactive position, thereby boosting the activity of the variant M.aqRLT toward octanoic acid. The study demonstrates the significant effects of both substrate stabilization and the impact of enzyme flexibility on catalytic efficiency. These results could guide the future engineering of enzymes with deeply buried active sites to increase or even establish activities toward yet unknown types of substrates.
Návaznosti
EF17_043/0009632, projekt VaV |
| ||
LM2018140, projekt VaV |
|