J 2021

Computational design of enzymes for biotechnological applications

PLANAS IGLESIAS, Joan, Sérgio Manuel MARQUES, José Gaspar RANGEL PAMPLONA PIZARRO PINTO, Miloš MUSIL, Jan ŠTOURAČ et. al.

Základní údaje

Originální název

Computational design of enzymes for biotechnological applications

Autoři

PLANAS IGLESIAS, Joan (724 Španělsko, domácí), Sérgio Manuel MARQUES (620 Portugalsko, domácí), José Gaspar RANGEL PAMPLONA PIZARRO PINTO (620 Portugalsko, domácí), Miloš MUSIL (203 Česká republika, domácí), Jan ŠTOURAČ (203 Česká republika, domácí), Jiří DAMBORSKÝ (203 Česká republika, garant, domácí) a David BEDNÁŘ (203 Česká republika, domácí)

Vydání

Biotechnology Advances, OXFORD, Elsevier, 2021, 0734-9750

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30405 Medical biotechnology related ethics

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 17.681

Kód RIV

RIV/00216224:14310/21:00119844

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000623948300009

Klíčová slova anglicky

Biocatalyst; Catalytic efficiency; Computational enzyme design; Enzyme biotechnologies; Protein engineering; Protein dynamics; Software; Solubility; Stability

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 15. 2. 2023 23:22, Mgr. Michaela Hylsová, Ph.D.

Anotace

V originále

Enzymes are the natural catalysts that execute biochemical reactions upholding life. Their natural effectiveness has been fine-tuned as a result of millions of years of natural evolution. Such catalytic effectiveness has prompted the use of biocatalysts from multiple sources on different applications, including the industrial production of goods (food and beverages, detergents, textile, and pharmaceutics), environmental protection, and biomedical applications. Natural enzymes often need to be improved by protein engineering to optimize their function in non-native environments. Recent technological advances have greatly facilitated this process by providing the experimental approaches of directed evolution or by enabling computer-assisted applications. Directed evolution mimics the natural selection process in a highly accelerated fashion at the expense of arduous laboratory work and economic resources. Theoretical methods provide predictions and represent an attractive complement to such experiments by waiving their inherent costs. Computational techniques can be used to engineer enzymatic reactivity, substrate specificity and ligand binding, access pathways and ligand transport, and global properties like protein stability, solubility, and flexibility. Theoretical approaches can also identify hotspots on the protein sequence for mutagenesis and predict suitable alternatives for selected positions with expected outcomes. This review covers the latest advances in computational methods for enzyme engineering and presents many successful case studies.

Návaznosti

EF16_027/0008360, projekt VaV
Název: Postdoc@MUNI
TN01000013, projekt VaV
Název: Personalizovaná medicína - diagnostika a terapie
Investor: Technologická agentura ČR, Personalizovaná medicína - diagnostika a terapie
814418, interní kód MU
Název: Synthetic biology-guided engineering of Pseudomonas putida for biofluorination (Akronym: SinFonia)
Investor: Evropská unie, Synthetic biology-guided engineering of Pseudomonas putida for biofluorination, Leadership in enabling and industrial technologies (LEIT) (Industrial Leadership)