2021
Computational design of enzymes for biotechnological applications
PLANAS IGLESIAS, Joan, Sérgio Manuel MARQUES, José Gaspar RANGEL PAMPLONA PIZARRO PINTO, Miloš MUSIL, Jan ŠTOURAČ et. al.Základní údaje
Originální název
Computational design of enzymes for biotechnological applications
Autoři
PLANAS IGLESIAS, Joan (724 Španělsko, domácí), Sérgio Manuel MARQUES (620 Portugalsko, domácí), José Gaspar RANGEL PAMPLONA PIZARRO PINTO (620 Portugalsko, domácí), Miloš MUSIL (203 Česká republika, domácí), Jan ŠTOURAČ (203 Česká republika, domácí), Jiří DAMBORSKÝ (203 Česká republika, garant, domácí) a David BEDNÁŘ (203 Česká republika, domácí)
Vydání
Biotechnology Advances, OXFORD, Elsevier, 2021, 0734-9750
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30405 Medical biotechnology related ethics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 17.681
Kód RIV
RIV/00216224:14310/21:00119844
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000623948300009
Klíčová slova anglicky
Biocatalyst; Catalytic efficiency; Computational enzyme design; Enzyme biotechnologies; Protein engineering; Protein dynamics; Software; Solubility; Stability
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 2. 2023 23:22, Mgr. Michaela Hylsová, Ph.D.
Anotace
V originále
Enzymes are the natural catalysts that execute biochemical reactions upholding life. Their natural effectiveness has been fine-tuned as a result of millions of years of natural evolution. Such catalytic effectiveness has prompted the use of biocatalysts from multiple sources on different applications, including the industrial production of goods (food and beverages, detergents, textile, and pharmaceutics), environmental protection, and biomedical applications. Natural enzymes often need to be improved by protein engineering to optimize their function in non-native environments. Recent technological advances have greatly facilitated this process by providing the experimental approaches of directed evolution or by enabling computer-assisted applications. Directed evolution mimics the natural selection process in a highly accelerated fashion at the expense of arduous laboratory work and economic resources. Theoretical methods provide predictions and represent an attractive complement to such experiments by waiving their inherent costs. Computational techniques can be used to engineer enzymatic reactivity, substrate specificity and ligand binding, access pathways and ligand transport, and global properties like protein stability, solubility, and flexibility. Theoretical approaches can also identify hotspots on the protein sequence for mutagenesis and predict suitable alternatives for selected positions with expected outcomes. This review covers the latest advances in computational methods for enzyme engineering and presents many successful case studies.
Návaznosti
EF16_027/0008360, projekt VaV |
| ||
TN01000013, projekt VaV |
| ||
814418, interní kód MU |
|